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Let U be some universal set and F : 2U → 2U be a monotone function. Induction

and co-induction are dual proof principles that derive from the definition of a set to be

the least or greatest solution, respectively, of equations of the form X = F(X). First

some definitions.

0.1 FIXPOINTS, F-CLOSED AND F-DENSE SETS

A function F : 2U → 2U is monotone if X ⊆ Y implies F(X)⊆ F(Y).
A fixpoint of F is a solution of the equation X = F(X).
A set X ⊆ U is F-closed iff F(X)⊆ X.

A set X ⊆ U is F-dense iff X ⊆ F(X).
µX.F(X)

△

=
⋂
{X | F(X)⊆ X}.

νX.F(X)
△

=
⋃
{X | X ⊆ F(X)}.

LEMMA 0.2.

(1) µX.F(X) is the least F-closed set.

(2) νX.F(X) is the greatest F-dense set.

Proof. We prove (2); (1) follows by a dual argument. Since νX.F(X) contains every

F-dense set by construction, we need only show that it is itself F-dense, for which the

following lemma suffices.

If every Xi is F-dense, so is the union
⋃

i Xi.

Since Xi ⊆ F(Xi) for every i,
⋃

i Xi ⊆
⋃

i F(Xi). Since F is monotone, F(Xi)⊆ F(
⋃

i Xi)
for each i. Therefore

⋃
i F(Xi) ⊆ F(

⋃
i Xi), and so we have

⋃
i Xi ⊆ F(

⋃
i Xi) by transi-

tivity, that is,
⋃

i Xi is F-dense. �

THEOREM 0.3 (TARSKI).

(1) µX.F(X) is the least fixpoint of F.

(2) νX.F(X) is the greatest fixpoint of F.

Proof. Again we prove (2) alone; (1) follows by a dual argument. Let ν = νX.F(X).
We have ν ⊆ F(ν) by Lemma 0.2. So F(ν) ⊆ F(F(ν)) by monotonicity of F. But

then F(ν) is F-dense, and therefore F(ν) ⊆ ν. Combining the inequalities we have

ν = F(ν); it is the greatest fixpoint because any other is F-dense, and hence contained

in ν. �
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We obtain two dual methods for defining sets and dual proof principles associated with

these definitions.

0.4 INDUCTION AND COINDUCTION

µX.F(X), the least solution of X = F(X), is the set inductively defined by F.

νX.F(X), the greatest solution of X = F(X), is the set co-inductively defined by F.

Principle of induction: If X is F-closed then µX.F(X)⊆ X.

Principle of co-induction: If X is F-dense then X ⊆ νX.F(X).

EXAMPLE 0.5. Mathematical induction is a special case. Suppose there is an element

0 ∈ U and an injective function succ : U → U. If we define a monotone function

FN : 2U → 2U by

FN(X)
△

= {0}∪{succ x | x ∈ X}

and set N
△

= µX.FN(X), the associated principle of induction is that N⊆X if FN(X)⊆X,

which is to say that N⊆ X if

• 0 ∈ X and

• x ∈ X implies succ x ∈ X.

Think of X as a predicate on the natural numbers (P(n) is true if n ∈ X). Then this says

∀n ∈ N.P(n) if

• P(0) and

• P(n) implies P(n+ 1). �

EXAMPLE 0.6. Induction on syntax is again just a special case. In fact, the above ex-

ample FT corresponds exactly to the syntax of naturals in TAPL. For another example,

consider boolean expressions, generated by the following function

FT (X)
△

= {true,false}∪{if x1 then x2 else x3 | x1,x2,x3 ∈ X}.

The set of terms is T = µX.FT (X). The associated principle of induction is that T ⊆ X

if FT (X)⊆ X, which is to say that T ⊆ X if

• true ∈ X and

• false ∈ X and

• x1,x2,x3 ∈ X implies if x1 then x2 else x3 ∈ X.

Think of X as a predicate on terms (P(t) is true if t ∈ X). Then this says ∀t ∈ T .P(t)
if

• P(true) and

• P(false) and

• P(x1)∧P(x2)∧P(x3) implies P(if x1 then x2 else x3). �

EXAMPLE 0.7. Induction on the derivation of evaluation is another special case. In-

duction on the derivation of typing is another special case. �
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1 Strong Versions

The definitions given previously are in fact a bit weaker than one wants. For exam-

ple, when showing that P(n) implies P(n+ 1) one would like to be able to assume

that n ∈ N. This is not justified by the principle induction as outlined so far. In this

section we show that such assumptions can be justified using a stronger formulation of

(co)induction.

PROPOSITION 1.1. Let U be an arbitrary universal set and let F : 2U → 2U be some

monotone function. If µ
△

= µX.F(X) and ν
△

= νX.F(X) we have:

µ = µX.F(X)∩µ (µ.I)

= µX.F(X∩µ) (µ.II)

= µX.F(X∩µ)∩µ (µ.III)

ν = νX.F(X)∪ν (ν.I)

= νX.F(X∪ν) (ν.II)

= νX.F(X∪ν)∪ν (ν.III)

Proof. We prove the results for ν; the proofs for µ are dual. Make the following defini-

tions.

ν1
△

= νX.F(X)∪ν

ν2
△

= νX.F(X∪ν)

ν3
△

= νX.F(X∪ν)∪ν

We must show that each νi equals ν. Since ν ⊆ F(ν) it follows by coinduction that

ν ⊆ νi for each i. The reverse inclusions take a little more work.

ν2 ⊆ ν. Since ν is a fixpoint of F, which is monotone, we have ν = F(ν)⊆ F(ν2 ∪ν).
Now ν2 ⊆ F(ν2 ∪ ν) so ν2 ∪ ν ⊆ F(ν2 ∪ ν), and therefore ν2 ∪ ν ⊆ ν by co-

induction. Hence ν2 ⊆ ν.

ν1 ⊆ ν2. We have ν1 = F(ν1)∪ν = F(ν1)∪F(ν)⊆ F(ν1 ∪ν). So ν1 ⊆ νX.F(X∪ν).

ν3 ⊆ ν2. We have ν3 = F(ν3 ∪ ν)∪ ν = F(ν3 ∪ ν)∪F(ν) = F(ν3 ∪ ν) since F(ν) ⊆
F(ν3 ∪ν). Hence ν3 ⊆ νX.F(X∪ν). �

(µ.III) and (ν.III) justify the following strong version of induction and coinduction.

1.2 STRONG (CO)INDUCTION (WHERE µ = µX.F(X) AND ν = νX.F(X))

Strong induction: If F(X∩µ)∩µ ⊆ X then µ ⊆ X.

Strong co-induction: If X ⊆ F(X∪ν)∪ν then ν ⊆ X.

EXAMPLE 1.3. For numbers, our strong induction yields N ⊆ X if {0}∪ {succ x ∈
N | x ∈ X∧ x ∈ N} ⊆ X. Written another way, we can conclude that N⊆ X if
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• 0 ∈ X and

• succ x ∈ X for every x such that x ∈N∩X and succ x ∈N.

Compare to the previous formulation:

• 0 ∈ X and

• succ x ∈ X for every x such that x ∈ X.

In practice it is often handy to assume that x is in µ (here N) and to only have to prove

F(X)⊆ X when F(X) is also in µ. �

4


	Strong Versions

