Define lambda

Define ints

is 1+1 =27

contextual equivalence
applicative bisimulation

1 Review of the Lambda Calculus

1.1 LAMBDA SYNTAX

X,Y,Z Variables

t,s,r 1= Terms
Ax.t Abstraction

Variable

ts Application

v,u = Values
Ax .t Abstraction

E = CBYV Evaluation Contexts
° Hole
Es Application Left
vE Application Right

Write E[t] for E[Ys].

1.2 FREE VARIABLES (fv(t) =%X) where X = {xi,...x,} and y = {y;,...y,.}

flt) =%) =x fu(s) =y
FO =T 02 0=F\ G i =iy |
1.3 ALPHA EQUIVALENCE (t=s)
=t s=¢
x=x moi=hy i Y te=ve

1.4 SUBSTITUTION (t[7/z] =s)

L, =t e ME=Y si=¢
Iz[r/z] =r x[f]=x

- O[] =ax.¥ X/ (s =ts

1.5 EVALUATION (t—s)

I 1
t—s t=t' t'—=d s

(Ax.t) s — t[%] Elt] = Els] t—s

Il
(2]

Alternative to using alpha equivalence in evaluation, is to identify syntax up to alpha

equivalence, or to make substitution total.

(M.t)=(Ay.s) s[fo]=5", .,
(Ax.t)[/e] =Ny . y €v(r)

1.6 EVALUATION (t=s)

I
t—s s=r

t=>t t=r

2 Other Semantics

2.1 Big Step Semantics

2.1 BIG-STEP EVALUATION (t) v)

' tdAx.r [dv t=t t'{v
viv ts{v tiv

PROPOSITION 2.2. t | vimplies t = v.

PROPOSITION 2.3. t = v impliest | v.

2.2 Explicit Stack

2.4 STACKS
I
G,p = Stacks
€ Empty
o,x=t Element
E = CBYV Evaluation Contexts
° Hole
Es Application Left

t
(Ox=t)x) =t (o,y=s)(x) =t

2.6 STACK EVALUATION (o>t —>s)

I
O, x=s>t—r o>t —s 6(x)=s

o>(Ax.t)s—r o> E[t] = E[s] O>X—S

PROPOSITION 2.7. ept = v implies t = v.

PROPOSITION 2.8. t = v implies e>t = v.

2.3 SECD Machine
2.4 Computational Lambda Calculus

3 Contextual Equivalence

3.1 CONVERGENCE (t})

I 1
t—s s{

v tl

3.2 CONTEXTUAL EQUIVALENCE (tass)

I
Terms t and s are equivalent (notation t = s) if for all contexts Z: E[t] | iff E[s] | .

3.3 CHURCH NUMERALS

I 1
A
co=As.Az.z

ci=As.Az.sz
co=As.Az.s (s z)

su.c.c.:éln.ks.lz.s(nsz)

Prove that (succ cy) & ¢

succc; = (An.As.Az.s (nsz)) (As.Az.s z)

—As.Az.s((As' . A2/ .&8' Z/) s 2)

Let U be some universal set and F : 2V — 2U be a monotone function. Induction
and co-induction are dual proof principles that derive from the definition of a set to be
the least or greatest solution, respectively, of equations of the form X = F(X). First
some definitions.

3.4 FIXPOINTS, FF-CLOSED AND F-DENSE SETS

I 1
A function F : 2V — 2V is monotone if X C Y implies F(X) C F(Y).
A fixpoint of F is a solution of the equation X = F(X).

Aset X C Uis F-closed iff F(X) C X.

Aset X C U is F-dense iff X C F(X).

WXF(X) £ X | F(X) CX}.

VX.F(X) = U{X | X CF(X)}.

L

LEMMA 3.5.

(1) uX.F(X) is the least F-closed set.
(2) VX.F(X) is the greatest F-dense set.

Proof. We prove (2); (1) follows by a dual argument. Since VX.F(X) contains every
F-dense set by construction, we need only show that it is itself F-dense, for which the
following lemma suffices.

If every X; is F-dense, so is the union |J; X;.

Since X; C F(X;) forevery i, U;X; C U; F(X;). Since F is monotone, F(X;) C F(U,; X;)
for each i. Therefore | J; F(X;) C F(; X;), and so we have |J; X; C F(lJ;X;) by transi-
tivity, that is, |J; X; is F-dense. O

THEOREM 3.6 (TARSKI).

(1) uX.F(X) is the least fixpoint of F.

(2) VX.F(X) is the greatest fixpoint of F.

Proof. Again we prove (2) alone; (1) follows by a dual argument. Let V = vX.F(X).
We have Vv C F(V) by Lemma 3.3 So F(V) C F(F(V)) by monotonicity of F. But
then F(V) is F-dense, and therefore F(V) C V. Combining the inequalities we have
V = F(V); it is the greatest fixpoint because any other is F-dense, and hence contained
inVv. O
We obtain two dual methods for defining sets and dual proof principles associated with
these definitions.

3.7 INDUCTION AND COINDUCTION

I

uX.F(X), the least solution of X = F(X), is the set inductively defined by F.
VX.F(X), the greatest solution of X = F(X), is the set co-inductively defined by F.
Principle of induction: If X is F-closed then uX.F(X) C X.

Principle of co-induction: If X is F-dense then X C VX.F(X).

L

Mathematical induction is a special case. Suppose there is an element 0 € U and an
injective function S : U — U. If we define a monotone function F : 2V — 2Y by

F(X) = {0} U{S(x) |xe X}

and set N = uX.F (X), the associated principle of induction is that N C X if F(X) C X,
which is to say that N C X if both 0 € X and Vx € X.(S(x) € X).

PROPOSITION 3.8. Let U be an arbitrary universal set and let F : 2V — 2Y be some
monotone function. IfV = vX.F(X) we have:

V=VvX.F(X)uUv v.D
= VX.F(XUV) (v.ID)
= VX.F(XUV)UV (v.IID)

Proof. Make the following definitions.
Vi = VX.F(X)UV
Vo = VX.F(XUYV)
V3 = VX.F(XUV)UV

We must show that each V; equals V. Since V C F(V) it follows by coinduction that
Vv C V; for each i. The reverse inclusions take a little more work.

Vv, C V. Since V is a fixpoint of F, which is monotone, we have V= F(V) C F(V, UV).
Now V, C F(V, UV) so V, UV C F(V, UV), and therefore Vo UV C V by co-
induction. Hence v, C V.

<l
IN

1 V. Wehave v, = F(V,) UV = F(V,) UF(V) C F(V, U¥). So v, CVX.F(XU¥V).

<|

3 C V. We have V3 = F(V3UV)UV = F(V3UV)UF(V) = F(V3UV) since F(V)

V2 c
F(V3UV). Hence V3 C VX.F(XUV). O

3.9 STRONG VERSIONS (WHERE i = uX.F(X) AND V = VX.F(X))

I

Strong induction: If F(XNu)Nu C X then i C X.
Strong co-induction: If X C F(XUV)UV then vV C X.
L

For numbers, our strong induction yields N C X if {0} U{S(x) e N|xe XAxe N} CX.

If 0 € X and S(x) € X forevery x e NNX, then N C X.

4 Applicative Bisimulation

	Review of the Lambda Calculus
	Other Semantics
	Big Step Semantics
	Explicit Stack
	SECD Machine
	Computational Lambda Calculus

	Contextual Equivalence
	Applicative Bisimulation

