equivalence, or to make substitution total.

(. )[72]

1.6 EVALUATION (t=s)

t—s s=r
t=t t=r

2 Other Semantics

2.1 Big Step Semantics

2.1 BIG-STEP EVALUATION (t |l v)

thAx.r v t v
viv tsv v
PROPOSITION 2.2. t |} v implies t = v.
PROPOSITION 2.3. t = v implies t |} v.
2.2 Explicit Stack
2.4 STACKS
r 1
Stacks
Empty
Element
CBV Evaluation Contexts
. Hole
s Application Left
2.5 STACK LOOKUP (6(x) =t)
r 1
o(x) =t -
(ox=tx) =t loy=s) =t 77
2.6 STACK EVALUATION (G>t —s)
O.x=sbt—r opt—s o(x)=s
os(x.t)s—r  obE[—Z[s  obx—s
L

PROPOSITION 2.7. €t = v implies t = v.

PROPOSITION 2.8. t = v implies e>t = v.

Define lambda
Define ints

is 141 =22

contextual equivalence
applicative bisimulation

e oo

1 Review of the Lambda Calculus

1.1 LAMBDA SYNTAX
r

XY,z Variables
ts,r Terms

Abstraction

Variable

Application
Values

Abstraction
CBV Evaluation Contexts

Hole

s Application Left

VE Application Right
Write E[t] for E[].

1.2 FREE VARIABLES (fv(t) =%) where X = {xi,...x,} and § = {y;....y,,}
fr(t) =% flt)=%_frls) =y
M ={z}  plz.=x\{z}  flts)=xy

1.3 ALPHA EQUIVALENCE (t=s)

o=ny e

X=x

1.4 SUBSTITUTION (t[2] =)
=t wrz A=t sih=¢
O[] =2t x£60)  (ts)[f =t

=x x#z
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1.5 EVALUATION (t —s)
r

t—s t=t t' =s s
(Ax.t)s— [ E[t] —+ E[s] t—s
lternative to using alpha equi in ion, is to identify syntax up to alpha

Proof. We prove (2); (1) follows by a dual argument. Since VX.F(X) contains every
F-dense set by construction, we need only show that it is itself F-dense, for which the
following lemma suffices.

If every X; is F-dense, so is the union U, X;.

Since X; € F(X;) for every i, U; X; C U, F(X;). Since F is monotone, F(X;) C F(U; X;)
for cach i. Therefore U; F(X;) € F(U; X;), and so we have U X; € F(U;X;) by transi-
tivity, that is, U; X; is F-dense. o

THEOREM 3.6 (TARSKI).

(1) uX.F(X) is the least fixpoint of F.

(2) VX.F(X) is the greatest fixpoint of F.

Proof. Again we prove (2) alone; (1) follows by a dual argument. Let ¥ = VX.F(X).
We have V C F(¥) by Lemma B3] So F(¥) C F(F(¥)) by monotonicity of F. But
then F(V) is F-dense, and therefore F(V) C V. Combining the inequalities we have
V = F(V): it is the greatest fixpoint because any other is F-dense, and hence contained
inv.

We obtain two dual methods for defining sets and dual proof principles associated with
these definitions.

3.7 INDUCTION AND COINDUCTION

HX.F(X), the least solution of X = F(X), is the set inductively defined by F.
VX.F(X), the greatest solution of X = F(X), is the set co-inductively defined by F.
Principle of induction: 1f X is F-closed then uX.F(X) C X.

Principle of co-induction: I X is F-dense then X C VX.F(X).

Mathematical induction is a special case. Suppose there is an element 0 € U and an
injective function §': U — U. If we define a monotone function F : 2V — 2V by

F(X) 2 {0} U{S(o) | x€ X}

and set N £ uX.F(X), the associated principle of induction is that N C X if F(X) C X,
which is to say that N C X if both 0 € X and Vx € X.(S(x) € X).

PROPOSITION 3.8. Let U be an arbitrary universal set and let F : 2V — 2V be some
monotone function. IfV < vX.F(X) we have:

V=VX.F(X)UV )
= VX.F(XUV) (v.In)
=VX.F(XUV)UV (v.Im

Proof. Make the following definitions.
£ VX.F(X)UV

£ VX.F(XUY)

V3 £ VX.F(XUV) UV

v
v

2.3 SECD Machine
2.4 Computational Lambda Calculus

3 Contextual Equivalence

3.1 CONVERGENCE (t|})

tos sl

v tl

3.2 CONTEXTUAL EQUIVALENCE (t='s)

Terms t and s are equivalent (notation t ~ s) if for all contexts E: ‘E[t] | iff E[s] | .
h

3.3 CHURCH NUMERALS

coihs.hz.z
i ids.Az.sz
2 ihs. Az 5 (s 2)

An.hs.Az.s(nsz)

Prove that (succ c;) = cp

succer £ (hn.ds.dz.s (n52)) (As.Az.52)
—2s.0z.s (' A2 .8 2) 5 2)

Let U be some universal set and F : 2 — 2 be a monotone function. Induction
and co-induction are dual proof principles that derive from the definition of a set to be
the least or greatest solution, respectively, of equations of the form X = F(X). First
some definitions.

3.4 FIXPOINTS, F-CLOSED AND F-DENSE SETS

“A function F 2V — 2V is monotone if X C ¥ implies F(X) C F(Y).
A fixpoint of F is a solution of the equation X = F(X).

AsetX C U is F-closed iff F(X) C X.

AsetX C U is F-denseiff X C F(X).

HXF(X) 2 {X | F(X) C X}

VX.F(X) £ U{X | X C F(X)}.

L

LEMMA 3.5.

(1) uX.F(X) is the least F-closed set.
(2) VX.F(X) is the greatest F-dense set.



We must show that each ¥; equals V. Since ¥ C F(¥) it follows by coinduction that
¥ C i for each i. The reverse inclusions take a little more work.

¥, C¥. Since Vs a fixpoint of F, which is monotone, we have ¥ = F(¥) C F(¥, UV).
Now ¥, C F(¥,UV) s0 V2 UV C F(¥, UV), and therefore ¥, UV C ¥ by co-
induction. Hence v, C 7.

Vi CVa. We have Vi = F(¥;) UV = F(¥)) UF(V) C F(¥, UV). So ¥, C VX.F(XUY).

<

3 C V. We have Vs = F(V3 UV) UV = F(V3 UV) UF(V) = F(V3 UV) since F(V) €
[m}

F(V;UV). Hence V3 C vX.F(XUV).

3.9 STRONG VERSIONS (WHERE i = piX.F(X) AND ¥ = VX.F(X))

b
Strong induction: If F(XNE) N C X then i C X.
Strong co-induction: It X C F(XUV) UV then ¥ C X.

For numbers, our strong induction yields N C X if {0} U{S(x) e N |xe XAxe N} C X.

I£0 € X and S(x) € X for every x € NN X, then N C X.

4 Applicative Bisimulation
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