
• Define lambda

• Define ints

• is 1+1 = 2?

• contextual equivalence

• applicative bisimulation

1 Review of the Lambda Calculus

1.1 LAMBDA SYNTAX

x,y,z Variables

t,s, r ::= Terms

λx.t Abstraction

x Variable

t s Application

v,u ::= Values

λx.t Abstraction

E ::= CBV Evaluation Contexts

• Hole

E s Application Left

v E Application Right

Write E [t] for E [t/•].

1.2 FREE VARIABLES (fv(t) = x̄) where x̄= {x1, . . .xn} and ȳ = {y1, . . .ym}

fv(z) = {z}

fv(t) = x̄

fv(λz.t) = x̄\ {z}

fv(t) = x̄ fv(s) = ȳ

fv(t s) = x̄∪ ȳ

1.3 ALPHA EQUIVALENCE (t≡ s)

x≡ x λx.t≡ λy.t[y/x]
y 6∈ fv(t)

t≡ t′ s≡ s′

t s≡ t′ s′

1.4 SUBSTITUTION (t[r/z] = s)

z[r/z] = r x[r/z] = x
x 6= z

t[r/z] = t′

(λx.t)[r/z] = λx.t′
x 6= z

x 6∈ fv(r)

t[r/z] = t′ s[r/z] = s′

(t s)[r/z] = t′ s′

1.5 EVALUATION (t→ s)

(λx.t) s→ t[s/x]

t→ s

E [t]→ E [s]

t≡ t′ t′ → s′ s′ ≡ s

t→ s

Alternative to using alpha equivalence in evaluation, is to identify syntax up to alpha

1

equivalence, or to make substitution total.

(λx.t)≡ (λy.s) s[r/z] = s′

(λx.t)[r/z] = λy.s′
y 6= z

y 6∈ fv(r)

1.6 EVALUATION (t⇒ s)

t⇒ t

t→ s s⇒ r

t⇒ r

2 Other Semantics

2.1 Big Step Semantics

2.1 BIG-STEP EVALUATION (t ⇓ v)

v ⇓ v

t ⇓ λx.r r[s/x] ⇓ v

t s ⇓ v

t≡ t′ t′ ⇓ v

t ⇓ v

PROPOSITION 2.2. t ⇓ v implies t⇒ v.

PROPOSITION 2.3. t⇒ v implies t ⇓ v.

2.2 Explicit Stack

2.4 STACKS

σ,ρ ::= Stacks

ε Empty

σ,x= t Element

E ::= CBV Evaluation Contexts

• Hole

E s Application Left

2.5 STACK LOOKUP (σ(x) = t)

(σ,x= t)(x) = t

σ(x) = t

(σ,y=s)(x) = t
x 6= y

2.6 STACK EVALUATION (σ⊲ t→ s)

σ,x=s⊲ t→ r

σ⊲ (λx.t) s→ r

σ⊲ t→ s

σ⊲E [t]→ E [s]

σ(x) = s

σ⊲x→ s

PROPOSITION 2.7. ε⊲ t⇒ v implies t⇒ v.

PROPOSITION 2.8. t⇒ v implies ε⊲ t⇒ v.

2

2.3 SECD Machine

2.4 Computational Lambda Calculus

3 Contextual Equivalence

3.1 CONVERGENCE (t ⇓)

v ⇓

t→ s s ⇓

t ⇓

3.2 CONTEXTUAL EQUIVALENCE (t≈ s)

Terms t and s are equivalent (notation t≈ s) if for all contexts E : E [t] ⇓ iff E [s] ⇓ .

3.3 CHURCH NUMERALS

c0

△

= λs.λz.z

c1

△

= λs.λz.s z
c2

△

= λs.λz.s (s z)
. . .

succ

△

= λn.λs.λz.s (n s z)

Prove that (succ c1)≈ c2

succ c1

△

= (λn.λs.λz.s (n s z)) (λs.λz.s z)

→ λs.λz.s ((λs′.λz′.s′ z′) s z)

Let U be some universal set and F : 2U → 2U be a monotone function. Induction

and co-induction are dual proof principles that derive from the definition of a set to be

the least or greatest solution, respectively, of equations of the form X = F(X). First

some definitions.

3.4 FIXPOINTS, F-CLOSED AND F-DENSE SETS

A function F : 2U → 2U is monotone if X ⊆ Y implies F(X)⊆ F(Y).
A fixpoint of F is a solution of the equation X = F(X).
A set X ⊆ U is F-closed iff F(X)⊆ X.

A set X ⊆ U is F-dense iff X ⊆ F(X).
µX.F(X)

△

=
⋂
{X | F(X)⊆ X}.

νX.F(X)
△

=
⋃
{X | X ⊆ F(X)}.

LEMMA 3.5.

(1) µX.F(X) is the least F-closed set.

(2) νX.F(X) is the greatest F-dense set.

3

Proof. We prove (2); (1) follows by a dual argument. Since νX.F(X) contains every

F-dense set by construction, we need only show that it is itself F-dense, for which the

following lemma suffices.

If every Xi is F-dense, so is the union
⋃

i Xi.

Since Xi ⊆ F(Xi) for every i,
⋃

i Xi ⊆
⋃

i F(Xi). Since F is monotone, F(Xi)⊆ F(
⋃

i Xi)
for each i. Therefore

⋃
i F(Xi) ⊆ F(

⋃
i Xi), and so we have

⋃
i Xi ⊆ F(

⋃
i Xi) by transi-

tivity, that is,
⋃

i Xi is F-dense. �

THEOREM 3.6 (TARSKI).

(1) µX.F(X) is the least fixpoint of F.

(2) νX.F(X) is the greatest fixpoint of F.

Proof. Again we prove (2) alone; (1) follows by a dual argument. Let ν = νX.F(X).
We have ν ⊆ F(ν) by Lemma 3.5. So F(ν) ⊆ F(F(ν)) by monotonicity of F. But

then F(ν) is F-dense, and therefore F(ν) ⊆ ν. Combining the inequalities we have

ν = F(ν); it is the greatest fixpoint because any other is F-dense, and hence contained

in ν. �

We obtain two dual methods for defining sets and dual proof principles associated with

these definitions.

3.7 INDUCTION AND COINDUCTION

µX.F(X), the least solution of X = F(X), is the set inductively defined by F.

νX.F(X), the greatest solution of X = F(X), is the set co-inductively defined by F.

Principle of induction: If X is F-closed then µX.F(X)⊆ X.

Principle of co-induction: If X is F-dense then X ⊆ νX.F(X).

Mathematical induction is a special case. Suppose there is an element 0 ∈ U and an

injective function S : U → U. If we define a monotone function F : 2U → 2U by

F(X)
△

= {0}∪{S(x) | x ∈ X}

and set N
△

= µX.F(X), the associated principle of induction is that N⊆ X if F(X)⊆ X,

which is to say that N⊆ X if both 0 ∈ X and ∀x ∈ X.(S(x) ∈ X).

PROPOSITION 3.8. Let U be an arbitrary universal set and let F : 2U → 2U be some

monotone function. If ν
△

= νX.F(X) we have:

ν = νX.F(X)∪ν (ν.I)

= νX.F(X∪ν) (ν.II)

= νX.F(X∪ν)∪ν (ν.III)

Proof. Make the following definitions.

ν1
△

= νX.F(X)∪ν

ν2
△

= νX.F(X∪ν)

ν3
△

= νX.F(X∪ν)∪ν

4



We must show that each νi equals ν. Since ν ⊆ F(ν) it follows by coinduction that

ν ⊆ νi for each i. The reverse inclusions take a little more work.

ν2 ⊆ ν. Since ν is a fixpoint of F, which is monotone, we have ν = F(ν)⊆ F(ν2 ∪ν).
Now ν2 ⊆ F(ν2 ∪ ν) so ν2 ∪ ν ⊆ F(ν2 ∪ ν), and therefore ν2 ∪ ν ⊆ ν by co-

induction. Hence ν2 ⊆ ν.

ν1 ⊆ ν2. We have ν1 = F(ν1)∪ν = F(ν1)∪F(ν)⊆ F(ν1 ∪ν). So ν1 ⊆ νX.F(X∪ν).

ν3 ⊆ ν2. We have ν3 = F(ν3 ∪ ν)∪ ν = F(ν3 ∪ ν)∪F(ν) = F(ν3 ∪ ν) since F(ν) ⊆
F(ν3 ∪ν). Hence ν3 ⊆ νX.F(X∪ν). �

3.9 STRONG VERSIONS (WHERE µ = µX.F(X) AND ν = νX.F(X))

Strong induction: If F(X∩µ)∩µ ⊆ X then µ ⊆ X.

Strong co-induction: If X ⊆ F(X∪ν)∪ν then ν ⊆ X.

For numbers, our strong induction yields N⊆ X if {0}∪{S(x)∈N | x∈X∧x∈N}⊆X.

If 0 ∈ X and S(x) ∈ X for every x ∈N∩X, then N⊆ X.

4 Applicative Bisimulation

5


	Review of the Lambda Calculus
	Other Semantics
	Big Step Semantics
	Explicit Stack
	SECD Machine
	Computational Lambda Calculus

	Contextual Equivalence
	Applicative Bisimulation

