Instruction Scheduling

Increasing Parallelism
Basic-Block Scheduling
Data-Dependency Graphs

The Model

@ A very-long-instruction-word machine
allows several operations to be
performed at once.

. : a list of “resources” (e.g., ALU) and
delay required for each instruction.

® Schedule the intermediate code
instructions of a basic block to minimize
the number of machine instructions.

Register/Parallelism Tradeoff

€ The more registers you use, the more
parallelism you can get.

@ For a basic block, SSA form = maximal
parallelism.

H O

Example

Assume 2 arithmetic operations per instruction

a = b+tc al = b+c

e = a+d Don't e = al+d

a = b-c reuse a a2 = b-c

f = a+d f = az+d

ALU1 ALU2 ALU1 ALU2

= b+c al = b+tc a2 = b-c
= a+d a = b-c e = al+d £ = az2+d

= a+d

More Extreme Example

} /* no parallelism */

for (1=0; 1<N; 1++) {
t[i] = af[i]+1;
b[i] = t[1]*t[1];

} /* All iterations can be
executed in parallel */

Rules for Instruction Scheduling

1. Don't change the set of operations
performed (on any computation path).

2. Make sure interfering operations are
performed in the same order.

* Data dependence.

Kinds of Data Dependence

1. Write-read (frue dependence):

+ A read of x must continue to follow the
previous write of x.

2. Read-write (antidependence):

+ A write of ¥ must continue to follow
previous reads of .

3. Write-write (output dependence):
+ Writes of » must stay in order.

Eliminating Data Dependences

€ Only true dependences cannot be
eliminated.

Eliminate output or anti- dependences
by writing into different variables.

A Machine Model

& Arithmetic is register*register ->
register.

* Requires one unit of ALU.

@ Loads (LD) and Stores (ST).

* Requires one unit of MEM (memory
buffer).

Timing in Our Machine Model

@ Arithmetic requires one clock cycle
(“clock ™).

@ Store requires 1 clock.

@ Load requires 2 clocks to complete .

+ But we can store into the same memory
location at the next clock.

+ And one LD can be issued at each clock.

10

Data-Dependence Graphs

& Nodes = machine instructions.

®Edge i -> j if instruction (j) has a data
dependence on instruction (i).

® Label an edge with the minimum delay
interval between when (i) may initiate
and when (j) may initiate.

+ Delay measured in clock cycles.

11

Resource

LD i MEM
LD r2, b MEM
ADD r3, rl, r2 ALU
ST a r2 MEM
ST lomsa MEM

ST el MEM

. Data-Dependence Graph

~.__ True dependence
regarding r2

Antidependence

: . True dependence
regarding b

regarding r3

13

Scheduling a Basic Block

&® [/st scheduling is a simple heuristic.

& Choose a prioritized topological order.

1. Respects the edges in the data-
dependence graph (* .

2. Heuristic choice among options, e.g., pick
first the node with the longest path
extending from that node (* .

14

. Data-Dependence Graph
~~~~~~~~~~~~~~~~~~~~~~~~~~ Fither of these

I could be first ---
_______ no predecessors,
> Paths of length 3.

Pick LD r1,a first.

No other node is

enabled; so pick
LD r2,b second.

15



. Data-Dependence Graph

2

Now, these three

~are enabled.

Pick the ADD,

__ since it has the

longest path
extending.

16



. Data-Dependence Graph

These three
can now occur
in any order.
- Pick the order
shown.

17



Using the List to Schedule

@ For each instruction in list order, find
the earliest clock cycle at which it can
be scheduled.

# Consider first when predecessors in the
dependence graph were scheduled;
that is a lower bound.

& Then, if necessary, delay further until
the necessary resources are available.

18



: Making the Schedule

LD rl,a

LD rl,a:
clock 1 earliest.
MEM available. e



: Making the Schedule

LD r2,b:
clock 1 earliest.

MEM not available.

Delay to clock 2.

20



: Making the Schedule

LD rl,a
LD r2,b

ADD r3,rl,xr2

ADD r3,rl,r2:
clock 4 earliest.
ALU available. 21



: Making the Schedule

LD rl, a
LD r2,Db

ADD r3,rl,xr2 ST a,r?2

ST a,r2:
clock 4 earliest.
MEM available. =



: Making the Schedule

LD rl, a
LD r2,b

ST b, rl
ADD r3,rl,xr2 ST a,r?2

ST b,rl:
clock 3 earliest.
MEM available. 23



: Making the Schedule

LD rl,a
LD r2,b
ST b, rl
ADD r3,rl,r2 ST a,r2

ST c,r3

ST c,r3:
clock 5 earliest.
MEM available. =



: Global Code Motion

€ \We can move code from one basic
block to another, to increase
parallelism.

* Must obey all dependencies.
&® Speculative execution (execute code

needed in only one branch) OK if
operation has no side effects.

¢ : LD into an unused register.

25



Upwards Code Motion

€ Can move code to a dominator if:
1. Dependencies satisfied.

2. No side effects unless source and
destination nodes are control equivalent :

€ Destination dominates source.
€ Source postdominates destination.
€ Can move to a nondominator if
compensation code is inserted.

26



Downwards Code Motion

€ Can move to a postdominator if:
1. Dependencies satisfied.
2. No side effects unless control equivalent.

€ Can move to a nhon-postdominator if
compensation code added.

27



Machine Model for Example

€ Same timing as before.
* | D = 2 clocks, others = 1 clock.

€ Machine can execute any two
instructions in parallel.

28



These LD’s are
side-effect free

and can be moved

to entry node. -

S S~a_
\ =—_
N -~
\ ~~<
\ ~~_
N\ S~a
\ ~~_
\ -

: Code Motion

v

LD rl, a
nop
BRZ rl,L

LD r2,b

~nop

ST\d,rZ

N
N
~
~
~
~
AN
~
~
~
~
~

‘LD r4,e
nop

ST f,r4*4l

LD r3,c
nop
ST d,r3

/

We can move this
ST to the entry

if we move LD r4
as well, because
this node is control-
equivalent to the

entry. -



: Code Motion --- (2)

v

LD rl, a LD r4,e
LD r2,b LD r3,c
BRZ rl,L ST £,r4

/\

LD r2,b
nop
ST d,r2

LD r3,c
nop
ST d,r3

ST d,r2 ST d,r3
LD r4,e
nop

v ST f,r4

30



Software Pipelining

€ Obtain parallelism by executing iterations
of a loop in an overlapping way.

& We'll focus on simplest case: the do-a//
loop, where iterations are independent.

4 . Initiate iterations as frequently as
possible.

4 : Use same schedule and delay
for each iteration.

31



Machine Model

€ Same timing as before (LD = 2, others
= 1 clock).

# Machine can execute one LD or ST and
one arithmetic operation (including
branch) at any one clock.

+ I.e., we're back to one ALU resource and
one MEM resource.

32



for (1=0; 1<N; 1++)
Bl[1] = A[1];

€ 9 holds 4N; r8 holds 4*i.

L: LD rl, a(r8)

Notice: data dependences
nop

force this schedule. No
ST b(r8), rl parallelism is possible.

ADD r8, r8, #4
BLT r8, r9, L

33



Let's Run 2 Iterations in Parallel

@ Focus on operations; worry about
registers later.

LD
nop LD
ST nop

~_ Oops --- violates
ADD ST " ALU resource
RLT ‘ADD o constraint.

BLT 34



Introduce a NOP

LD
nop LD
2 % Add a third iteration.
LB >1 Nnop Several resource
nop ADD / conflicts arise.
BLT nop ADD

BLT nop

BLT

35



Is It Possible to Have an
[teration Start at Every Clock?

¢ : No.
& Why?

s 2 MEM and 2 ALU

@ An iteration injec

resource requirements.

+ If injected every clock, the machine cannot
possibly satisfy all requests.

€ Minimum delay =

2.

36



A Schedule With Delay 2

LD
nop . Initialization
nop LD
ST nop
ADD nop LD N g Identical iterations
RLT ST nop - of the loop
ADD nop LD
BLT ST nop
ADD nop
BLT ST . =
ADD

37



Assigning Registers

® We don’t need an infinite number of
registers.

€ We can reuse registers for iterations
that do not overlap in time.

€ But we can't just use the same old
registers for every iteration.

38



Assigning Registers --- (2)

# The inner loop may have to involve
more than one copy of the smallest
repeating pattern.

+ Enough so that registers may be reused at
each iteration of the expanded inner loop.

€ Our example: 3 iterations coexist, so
we need 3 sets of registers and 3
copies of the pattern.

39



. Assigning Registers

@ Our original loop used registers:
+* r9 to hold a constant 4N.
+ 18 to count iterations and index the arrays.
+ r1 to copy a[i] into b[i].

# The expanded loop needs:
+ 19 holds 4N.
* 16, r7, r8 to count iterations and index.
*rl, r2, r3 to copy certain array elements.

40



The Loop Body

Each register handles every
third element of the arrays.

To break the loop early

| Tteration /

ADD r8,r8, #12

BGE r8,r9,L’

z
p
X

LD
nop
nop
ST

rl,a(r8)

b(rgd),rl

Iteration 7+ 3

L"and L"” are places for appropriate codas.

" ADD

_Tteration 7 + 1

nop |
ST b(r7),r2
r7,r7,#12

r i

4
BGE

LD
nop

r2,a(r’)

Iteration 7/ + 4

Iteration / + 2

r3,a(r6)

\
\
\

LD
nop
nop \
ST b(r6),r3
ADD r6,ro6, #12
BLT r6,r9, L

41




Cyclic Data-Dependence Graphs

® \We assumed that data at an iteration
depends only on data computed at the
same iteration.
* Not even true for our example.

* r8 computed from its previous iteration.
e But it doesn’t matter in this example.

¢ : edge labels have two
components: (iteration change, delay).

42



. Cyclic D-D Graph

(A)

(A) must wait at
least one clock
1,1> after the (C) from
the

------- (C) must wait at iteration.
least one clock

after the (B) from

the iteration.

(B)

(€

(D)

43



Inter-Iteration Constraint

T
(A) T
(C) At least l

T 1 clock

\» (A)

(C)




Matrix of Delays

& Let T be the delay between the start
times of one iteration and the next.

® Replace edge label <i,j> by delay j-iT.

¥ Compute, for each pair of nodes 11 and
the total delay along the longest
path from 1 to

@ Gives upper and lower bounds relating
the times to schedule ' and

45



The Schedule

@ Iterations commence at times O, T,
2T, ...

@ A statement corresponding to node 11 is
scheduled S(n) clocks after the
commencement of its iteration.

46



Delay Matrix

A B C D A B C D
A 2 A (2) 3 | 4
B 1 B QE 1|2
» \\\
ClaiT|tT 1 CliT3T 1
D D )
Edges Acyclic Transitive Closure

: Implies T = 4. If T=4, then A

(LD) must be 2 clocks before B (ST).
If T=5, A can be 2-3 clocks before B.

\S\(B) > S(A)+2

S(A) = S(B)+2-T

S(B)-2 = S(A) = S(B)+2-T

47



A Query

€ When we considered software
pipelining, we found that it was possible
to initiate an iteration every 2 clocks.

®Now, we've concluded that T > 4.
€ What's going on?

48



