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Instruction Scheduling

Increasing Parallelism

Basic-Block Scheduling

Data-Dependency Graphs
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The Model

�A very-long-instruction-word machine 
allows several operations to be 
performed at once.

� Given: a list of “resources” (e.g., ALU) and 
delay required for each instruction.

�Schedule the intermediate code 
instructions of a basic block to minimize 
the number of machine instructions.
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Register/Parallelism Tradeoff

�The more registers you use, the more 
parallelism you can get.

�For a basic block, SSA form = maximal 
parallelism.
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Example

a = b+c

e = a+d

a = b-c

f = a+d

a = b+c

e = a+d a = b-c

f = a+d

a1 = b+c

e = a1+d

a2 = b-c

f = a2+d

a1 = b+c a2 = b-c

e = a1+d f = a2+d

Assume 2 arithmetic operations per instruction

Don’t
reuse a

ALU1 ALU2 ALU1 ALU2
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More Extreme Example

for (i=0; i<N; i++) {

t = a[i]+1;

b[i] = t*t;

} /* no parallelism */

for (i=0; i<N; i++) {

t[i] = a[i]+1;

b[i] = t[i]*t[i];

} /* All iterations can be

executed in parallel */
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Rules for Instruction Scheduling

1. Don’t change the set of operations 
performed (on any computation path).

2. Make sure interfering operations are 
performed in the same order.

� Data dependence.
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Kinds of Data Dependence

1. Write-read (true dependence ):
� A read of x must continue to follow the 

previous write of x.

2. Read-write (antidependence ):
� A write of x must continue to follow 

previous reads of x.

3. Write-write (output dependence ):
� Writes of x must stay in order.
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Eliminating Data Dependences

�Only true dependences cannot be 
eliminated.

�Eliminate output or anti- dependences 
by writing into different variables.
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A Machine Model

�Arithmetic is register*register -> 
register.

� Requires one unit of ALU.

�Loads (LD) and Stores (ST).

� Requires one unit of MEM (memory 
buffer).
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Timing in Our Machine Model

�Arithmetic requires one clock cycle 
(“clock ”).

�Store requires 1 clock.

�Load requires 2 clocks to complete .

� But we can store into the same memory 
location at the next clock.

� And one LD can be issued at each clock.
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Data-Dependence Graphs

�Nodes = machine instructions.

�Edge i -> j if instruction (j) has a data 
dependence on instruction (i).

�Label an edge with the minimum delay 
interval between when (i) may initiate 
and when (j) may initiate.

� Delay measured in clock cycles.
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Example

Resource

LD  r1, a MEM

LD  r2, b MEM

ADD r3, r1, r2 ALU

ST  a r2 MEM

ST  b r1 MEM

ST  c r3 MEM
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Example: Data-Dependence Graph
LD r1,a

LD r2,b

ADD r3,r1,r2

ST a,r2

ST b,r1

ST c,r3

22

2 2

1

1

1

True dependence
regarding r2

Antidependence
regarding b

True dependence
regarding r3



14

Scheduling a Basic Block

� List scheduling is a simple heuristic.

� Choose a prioritized topological order.

1. Respects the edges in the data-
dependence graph (“topological”).

2. Heuristic choice among options, e.g., pick 
first the node with the longest path 
extending from that node (“prioritized”).
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Example: Data-Dependence Graph
LD r1,a

LD r2,b

ADD r3,r1,r2

ST a,r2

ST b,r1

ST c,r3

22

2 2

1

1

1

Either of these
could be first ---
no predecessors,
paths of length 3.

Pick LD r1,a first.
No other node is
enabled; so pick
LD r2,b second.
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Example: Data-Dependence Graph
LD r1,a

LD r2,b

ADD r3,r1,r2

ST a,r2

ST b,r1

ST c,r3

22

2 2

1

1

1

Now, these three
are enabled.
Pick the ADD,
since it has the
longest path
extending.
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Example: Data-Dependence Graph
LD r1,a

LD r2,b

ADD r3,r1,r2

ST a,r2

ST b,r1

ST c,r3

22

2 2

1

1

1

These three
can now occur
in any order.
Pick the order
shown.
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Using the List to Schedule

�For each instruction in list order, find 
the earliest clock cycle at which it can 
be scheduled.

�Consider first when predecessors in the 
dependence graph were scheduled; 
that is a lower bound.

�Then, if necessary, delay further until 
the necessary resources are available.
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Example: Making the Schedule

LD r1,a:
clock 1 earliest.
MEM available.

LD r1,a
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Example: Making the Schedule

LD r2,b:
clock 1 earliest.
MEM  not available.
Delay to clock 2.

LD r1,a

LD r2,b
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Example: Making the Schedule

ADD r3,r1,r2:
clock 4 earliest.
ALU available.

LD r1,a

LD r2,b

ADD r3,r1,r2
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Example: Making the Schedule

ST a,r2:
clock 4 earliest.
MEM available.

LD r1,a

LD r2,b

ADD r3,r1,r2 ST a,r2
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Example: Making the Schedule

ST b,r1:
clock 3 earliest.
MEM available.

ADD r3,r1,r2 ST a,r2

LD r1,a

LD r2,b

ST b,r1
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Example: Making the Schedule

ST c,r3:
clock 5 earliest.
MEM available.

LD r1,a

LD r2,b

ST b,r1

ADD r3,r1,r2 ST a,r2

ST c,r3
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New Topic: Global Code Motion

�We can move code from one basic 
block to another, to increase 
parallelism.

�Must obey all dependencies.

�Speculative execution (execute code 
needed in only one branch) OK if 
operation has no side effects.

� Example: LD into an unused register.
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Upwards Code Motion

� Can move code to a dominator if:

1. Dependencies satisfied.

2. No side effects unless source and 
destination nodes are control equivalent :
� Destination dominates source.

� Source postdominates destination.

� Can move to a nondominator if 
compensation code is inserted.
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Downwards Code Motion

� Can move to a postdominator if:

1. Dependencies satisfied.

2. No side effects unless control equivalent.

� Can move to a non-postdominator if 
compensation code added.
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Machine Model for Example

�Same timing as before.

� LD = 2 clocks, others = 1 clock.

�Machine can execute any two 
instructions in parallel.



29

Example: Code Motion

LD r1,a 

nop     

BRZ r1,L

LD r3,c

nop    

ST d,r3

LD r2,b

nop    

ST d,r2

LD r4,e

nop    

ST f,r4

These LD’s are
side-effect free
and can be moved
to entry node.

We can move this
ST to the entry
if we move LD r4
as well, because
this node is control-
equivalent to the
entry.
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Example: Code Motion --- (2)

LD r1,a    LD r4,e

LD r2,b    LD r3,c

BRZ r1,L   ST f,r4

ST d,r3ST d,r2

LD r2,b

nop    

ST d,r2

LD r3,c

nop    

ST d,r3

LD r4,e

nop    

ST f,r4
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Software Pipelining

�Obtain parallelism by executing iterations 
of a loop in an overlapping way.

�We’ll focus on simplest case: the do-all
loop, where iterations are independent.

�Goal: Initiate iterations as frequently as 
possible.

�Limitation: Use same schedule and delay 
for each iteration.
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Machine Model

�Same timing as before (LD = 2, others 
= 1 clock).

�Machine can execute one LD or ST and 
one arithmetic operation (including 
branch) at any one clock.

� I.e., we’re back to one ALU resource and 
one MEM resource.
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Example

for (i=0; i<N; i++)

B[i] = A[i];

� r9 holds 4N; r8 holds 4*i.

L: LD r1, a(r8)

nop

ST b(r8), r1

ADD r8, r8, #4

BLT r8, r9, L

Notice: data dependences
force this schedule.  No
parallelism is possible.
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Let’s Run 2 Iterations in Parallel

�Focus on operations; worry about 
registers later.

LD

nop LD

ST nop

ADD ST

BLT ADD

BLT

Oops --- violates
ALU resource
constraint.
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Introduce a NOP

LD

nop LD

ST nop

ADD ST

nop ADD

BLT nop

BLT

LD

nop

ST

ADD

nop

BLT

Add a third iteration.
Several resource
conflicts arise.
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Is It Possible to Have an 
Iteration Start at Every Clock?

�Hint: No.

�Why?

�An iteration injects 2 MEM and 2 ALU 
resource requirements.

� If injected every clock, the machine cannot 
possibly satisfy all requests.

�Minimum delay = 2.
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A Schedule With Delay 2
LD

nop

nop

ST

ADD

BLT

LD

nop

nop

ST

ADD

BLT

LD

nop

nop

ST

ADD

BLT

LD

nop

nop

ST

ADD

BLT

Initialization

Coda

Identical iterations
of the loop
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Assigning Registers

�We don’t need an infinite number of 
registers.

�We can reuse registers for iterations 
that do not overlap in time.

�But we can’t just use the same old 
registers for every iteration.
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Assigning Registers --- (2)

�The inner loop may have to involve 
more than one copy of the smallest 
repeating pattern.

� Enough so that registers may be reused at 
each iteration of the expanded inner loop.

�Our example: 3 iterations coexist, so 
we need 3 sets of registers and 3 
copies of the pattern.
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Example: Assigning Registers

�Our original loop used registers:

� r9 to hold a constant 4N.

� r8 to count iterations and index the arrays.

� r1 to copy a[i] into b[i].

�The expanded loop needs:

� r9 holds 4N.

� r6, r7, r8 to count iterations and index.

� r1, r2, r3 to copy certain array elements.
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The Loop Body

L: ADD r8,r8,#12 nop LD  r3,a(r6)

BGE r8,r9,L’ ST  b(r7),r2 nop

LD  r1,a(r8) ADD r7,r7,#12 nop

nop BGE r7,r9,L’’ ST  b(r6),r3

nop LD  r2,a(r7) ADD r6,r6,#12

ST  b(r8),r1 nop BLT r6,r9,L

Iteration i

Iteration i + 4

Iteration i + 1

Iteration i + 3

Iteration i + 2

To break the loop early
Each register handles every
third element of the arrays.

L’ and L’’ are places for appropriate codas.
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Cyclic Data-Dependence Graphs

�We assumed that data at an iteration 
depends only on data computed at the 
same iteration.

� Not even true for our example.

• r8 computed from its previous iteration.

• But it doesn’t matter in this example.

�Fixup: edge labels have two 
components: (iteration change, delay).
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Example: Cyclic D-D Graph

LD r1,a(r8)

ST b(r8),r1

ADD r8,r8,#4

BLT r8,r9,L

<0,2>
<1,1>

<0,1>

<0,1>

(A)

(B)

(C)

(D)

(C) must wait at
least one clock
after the (B) from
the same iteration.

(A) must wait at
least one clock
after the (C) from
the previous
iteration.

<1,1>
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Inter-Iteration Constraint

At least
1 clock

(C)

(A)

(C)

(A)

T
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Matrix of Delays

�Let T be the delay between the start 
times of one iteration and the next.

�Replace edge label <i,j> by delay j-iT.

�Compute, for each pair of nodes n and 
m the total delay along the longest 
acyclic path from n to m.

�Gives upper and lower bounds relating 
the times to schedule n and m.
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The Schedule

�Iterations commence at times 0, T, 
2T,…

�A statement corresponding to node n is 
scheduled S(n) clocks after the 
commencement of its iteration.
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Example: Delay Matrix

A

A

B

C

D

B C D

2

1-T

1

1

A

A

B

C

D

B C D

2

1-T

1

1

3

2-T 2

3-T

4

Edges Acyclic Transitive Closure

S(B) ≥ S(A)+2

S(A) ≥ S(B)+2-T

S(B)-2 ≥ S(A) ≥ S(B)+2-T

Note: Implies T ≥ 4.  If T=4, then A

(LD) must be 2 clocks before B (ST).
If T=5, A can be 2-3 clocks before B. 

1-T
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A Query

�When we considered software 
pipelining, we found that it was possible 
to initiate an iteration every 2 clocks.

�Now, we’ve concluded that T ≥ 4.

�What’s going on?


