
1

Instruction Scheduling

Increasing Parallelism

Basic-Block Scheduling

Data-Dependency Graphs

2

The Model

�A very-long-instruction-word machine
allows several operations to be
performed at once.

� Given: a list of “resources” (e.g., ALU) and
delay required for each instruction.

�Schedule the intermediate code
instructions of a basic block to minimize
the number of machine instructions.

3

Register/Parallelism Tradeoff

�The more registers you use, the more
parallelism you can get.

�For a basic block, SSA form = maximal
parallelism.

4

Example

a = b+c

e = a+d

a = b-c

f = a+d

a = b+c

e = a+d a = b-c

f = a+d

a1 = b+c

e = a1+d

a2 = b-c

f = a2+d

a1 = b+c a2 = b-c

e = a1+d f = a2+d

Assume 2 arithmetic operations per instruction

Don’t
reuse a

ALU1 ALU2 ALU1 ALU2

5

More Extreme Example

for (i=0; i<N; i++) {

t = a[i]+1;

b[i] = t*t;

} /* no parallelism */

for (i=0; i<N; i++) {

t[i] = a[i]+1;

b[i] = t[i]*t[i];

} /* All iterations can be

executed in parallel */

6

Rules for Instruction Scheduling

1. Don’t change the set of operations
performed (on any computation path).

2. Make sure interfering operations are
performed in the same order.

� Data dependence.

7

Kinds of Data Dependence

1. Write-read (true dependence):
� A read of x must continue to follow the

previous write of x.

2. Read-write (antidependence):
� A write of x must continue to follow

previous reads of x.

3. Write-write (output dependence):
� Writes of x must stay in order.

8

Eliminating Data Dependences

�Only true dependences cannot be
eliminated.

�Eliminate output or anti- dependences
by writing into different variables.

9

A Machine Model

�Arithmetic is register*register ->
register.

� Requires one unit of ALU.

�Loads (LD) and Stores (ST).

� Requires one unit of MEM (memory
buffer).

10

Timing in Our Machine Model

�Arithmetic requires one clock cycle
(“clock ”).

�Store requires 1 clock.

�Load requires 2 clocks to complete .

� But we can store into the same memory
location at the next clock.

� And one LD can be issued at each clock.

11

Data-Dependence Graphs

�Nodes = machine instructions.

�Edge i -> j if instruction (j) has a data
dependence on instruction (i).

�Label an edge with the minimum delay
interval between when (i) may initiate
and when (j) may initiate.

� Delay measured in clock cycles.

12

Example

Resource

LD r1, a MEM

LD r2, b MEM

ADD r3, r1, r2 ALU

ST a r2 MEM

ST b r1 MEM

ST c r3 MEM

13

Example: Data-Dependence Graph
LD r1,a

LD r2,b

ADD r3,r1,r2

ST a,r2

ST b,r1

ST c,r3

22

2 2

1

1

1

True dependence
regarding r2

Antidependence
regarding b

True dependence
regarding r3

14

Scheduling a Basic Block

� List scheduling is a simple heuristic.

� Choose a prioritized topological order.

1. Respects the edges in the data-
dependence graph (“topological”).

2. Heuristic choice among options, e.g., pick
first the node with the longest path
extending from that node (“prioritized”).

15

Example: Data-Dependence Graph
LD r1,a

LD r2,b

ADD r3,r1,r2

ST a,r2

ST b,r1

ST c,r3

22

2 2

1

1

1

Either of these
could be first ---
no predecessors,
paths of length 3.

Pick LD r1,a first.
No other node is
enabled; so pick
LD r2,b second.

16

Example: Data-Dependence Graph
LD r1,a

LD r2,b

ADD r3,r1,r2

ST a,r2

ST b,r1

ST c,r3

22

2 2

1

1

1

Now, these three
are enabled.
Pick the ADD,
since it has the
longest path
extending.

17

Example: Data-Dependence Graph
LD r1,a

LD r2,b

ADD r3,r1,r2

ST a,r2

ST b,r1

ST c,r3

22

2 2

1

1

1

These three
can now occur
in any order.
Pick the order
shown.

18

Using the List to Schedule

�For each instruction in list order, find
the earliest clock cycle at which it can
be scheduled.

�Consider first when predecessors in the
dependence graph were scheduled;
that is a lower bound.

�Then, if necessary, delay further until
the necessary resources are available.

19

Example: Making the Schedule

LD r1,a:
clock 1 earliest.
MEM available.

LD r1,a

20

Example: Making the Schedule

LD r2,b:
clock 1 earliest.
MEM not available.
Delay to clock 2.

LD r1,a

LD r2,b

21

Example: Making the Schedule

ADD r3,r1,r2:
clock 4 earliest.
ALU available.

LD r1,a

LD r2,b

ADD r3,r1,r2

22

Example: Making the Schedule

ST a,r2:
clock 4 earliest.
MEM available.

LD r1,a

LD r2,b

ADD r3,r1,r2 ST a,r2

23

Example: Making the Schedule

ST b,r1:
clock 3 earliest.
MEM available.

ADD r3,r1,r2 ST a,r2

LD r1,a

LD r2,b

ST b,r1

24

Example: Making the Schedule

ST c,r3:
clock 5 earliest.
MEM available.

LD r1,a

LD r2,b

ST b,r1

ADD r3,r1,r2 ST a,r2

ST c,r3

25

New Topic: Global Code Motion

�We can move code from one basic
block to another, to increase
parallelism.

�Must obey all dependencies.

�Speculative execution (execute code
needed in only one branch) OK if
operation has no side effects.

� Example: LD into an unused register.

26

Upwards Code Motion

� Can move code to a dominator if:

1. Dependencies satisfied.

2. No side effects unless source and
destination nodes are control equivalent :
� Destination dominates source.

� Source postdominates destination.

� Can move to a nondominator if
compensation code is inserted.

27

Downwards Code Motion

� Can move to a postdominator if:

1. Dependencies satisfied.

2. No side effects unless control equivalent.

� Can move to a non-postdominator if
compensation code added.

28

Machine Model for Example

�Same timing as before.

� LD = 2 clocks, others = 1 clock.

�Machine can execute any two
instructions in parallel.

29

Example: Code Motion

LD r1,a

nop

BRZ r1,L

LD r3,c

nop

ST d,r3

LD r2,b

nop

ST d,r2

LD r4,e

nop

ST f,r4

These LD’s are
side-effect free
and can be moved
to entry node.

We can move this
ST to the entry
if we move LD r4
as well, because
this node is control-
equivalent to the
entry.

30

Example: Code Motion --- (2)

LD r1,a LD r4,e

LD r2,b LD r3,c

BRZ r1,L ST f,r4

ST d,r3ST d,r2

LD r2,b

nop

ST d,r2

LD r3,c

nop

ST d,r3

LD r4,e

nop

ST f,r4

31

Software Pipelining

�Obtain parallelism by executing iterations
of a loop in an overlapping way.

�We’ll focus on simplest case: the do-all
loop, where iterations are independent.

�Goal: Initiate iterations as frequently as
possible.

�Limitation: Use same schedule and delay
for each iteration.

32

Machine Model

�Same timing as before (LD = 2, others
= 1 clock).

�Machine can execute one LD or ST and
one arithmetic operation (including
branch) at any one clock.

� I.e., we’re back to one ALU resource and
one MEM resource.

33

Example

for (i=0; i<N; i++)

B[i] = A[i];

� r9 holds 4N; r8 holds 4*i.

L: LD r1, a(r8)

nop

ST b(r8), r1

ADD r8, r8, #4

BLT r8, r9, L

Notice: data dependences
force this schedule. No
parallelism is possible.

34

Let’s Run 2 Iterations in Parallel

�Focus on operations; worry about
registers later.

LD

nop LD

ST nop

ADD ST

BLT ADD

BLT

Oops --- violates
ALU resource
constraint.

35

Introduce a NOP

LD

nop LD

ST nop

ADD ST

nop ADD

BLT nop

BLT

LD

nop

ST

ADD

nop

BLT

Add a third iteration.
Several resource
conflicts arise.

36

Is It Possible to Have an
Iteration Start at Every Clock?

�Hint: No.

�Why?

�An iteration injects 2 MEM and 2 ALU
resource requirements.

� If injected every clock, the machine cannot
possibly satisfy all requests.

�Minimum delay = 2.

37

A Schedule With Delay 2
LD

nop

nop

ST

ADD

BLT

LD

nop

nop

ST

ADD

BLT

LD

nop

nop

ST

ADD

BLT

LD

nop

nop

ST

ADD

BLT

Initialization

Coda

Identical iterations
of the loop

38

Assigning Registers

�We don’t need an infinite number of
registers.

�We can reuse registers for iterations
that do not overlap in time.

�But we can’t just use the same old
registers for every iteration.

39

Assigning Registers --- (2)

�The inner loop may have to involve
more than one copy of the smallest
repeating pattern.

� Enough so that registers may be reused at
each iteration of the expanded inner loop.

�Our example: 3 iterations coexist, so
we need 3 sets of registers and 3
copies of the pattern.

40

Example: Assigning Registers

�Our original loop used registers:

� r9 to hold a constant 4N.

� r8 to count iterations and index the arrays.

� r1 to copy a[i] into b[i].

�The expanded loop needs:

� r9 holds 4N.

� r6, r7, r8 to count iterations and index.

� r1, r2, r3 to copy certain array elements.

41

The Loop Body

L: ADD r8,r8,#12 nop LD r3,a(r6)

BGE r8,r9,L’ ST b(r7),r2 nop

LD r1,a(r8) ADD r7,r7,#12 nop

nop BGE r7,r9,L’’ ST b(r6),r3

nop LD r2,a(r7) ADD r6,r6,#12

ST b(r8),r1 nop BLT r6,r9,L

Iteration i

Iteration i + 4

Iteration i + 1

Iteration i + 3

Iteration i + 2

To break the loop early
Each register handles every
third element of the arrays.

L’ and L’’ are places for appropriate codas.

42

Cyclic Data-Dependence Graphs

�We assumed that data at an iteration
depends only on data computed at the
same iteration.

� Not even true for our example.

• r8 computed from its previous iteration.

• But it doesn’t matter in this example.

�Fixup: edge labels have two
components: (iteration change, delay).

43

Example: Cyclic D-D Graph

LD r1,a(r8)

ST b(r8),r1

ADD r8,r8,#4

BLT r8,r9,L

<0,2>
<1,1>

<0,1>

<0,1>

(A)

(B)

(C)

(D)

(C) must wait at
least one clock
after the (B) from
the same iteration.

(A) must wait at
least one clock
after the (C) from
the previous
iteration.

<1,1>

44

Inter-Iteration Constraint

At least
1 clock

(C)

(A)

(C)

(A)

T

45

Matrix of Delays

�Let T be the delay between the start
times of one iteration and the next.

�Replace edge label <i,j> by delay j-iT.

�Compute, for each pair of nodes n and
m the total delay along the longest
acyclic path from n to m.

�Gives upper and lower bounds relating
the times to schedule n and m.

46

The Schedule

�Iterations commence at times 0, T,
2T,…

�A statement corresponding to node n is
scheduled S(n) clocks after the
commencement of its iteration.

47

Example: Delay Matrix

A

A

B

C

D

B C D

2

1-T

1

1

A

A

B

C

D

B C D

2

1-T

1

1

3

2-T 2

3-T

4

Edges Acyclic Transitive Closure

S(B) ≥ S(A)+2

S(A) ≥ S(B)+2-T

S(B)-2 ≥ S(A) ≥ S(B)+2-T

Note: Implies T ≥ 4. If T=4, then A

(LD) must be 2 clocks before B (ST).
If T=5, A can be 2-3 clocks before B.

1-T

48

A Query

�When we considered software
pipelining, we found that it was possible
to initiate an iteration every 2 clocks.

�Now, we’ve concluded that T ≥ 4.

�What’s going on?

