Really Basic Stuff

Flow Graphs
Constant Folding
Global Common Subexpressions
Induction Variables/Reduction in Strength
Dawn of Code Optimization

-ln Flow graphs of intermediate code.
-ln Key things worth doing.
Intermediate Code

for (i=0; i<n; i++)
 A[i] = 1;

- Intermediate code exposes optimizable constructs we cannot see at source-code level.
- Make flow explicit by breaking into *basic blocks* = sequences of steps with entry at beginning, exit at end.
Basic Blocks

```
i = 0

if i>=n goto ...

t1 = 8*i
A[t1] = 1
i = i+1
```
Induction Variables

◆ x is an *induction variable* in a loop if it takes on a linear sequence of values each time through the loop.

◆ **Common case**: loop index like i and computed array index like $t1$.

◆ Eliminate “superfluous” induction variables.

◆ Replace multiplication by addition (**reduction in strength**).
Example

```
i = 0

if i>=n goto ...

t1 = 8*i
A[t1] = 1
i = i+1
```

```
t1 = 0
n1 = 8*n

if t1>=n1 goto ...

A[t1] = 1
t1 = t1+8
```
Loop-Invariant Code Motion

- Sometimes, a computation is done each time around a loop.
- Move it before the loop to save n-1 computations.
 - Be careful: could n=0? I.e., the loop is typically executed 0 times.
Example

```
Example 1

i = 0

if i >= n goto ...

t1 = y + z
x = x + t1
i = i + 1

Example 2

i = 0

if i >= n goto ...

t1 = y + z

x = x + t1
i = i + 1
```
Constant Folding

- Sometimes a variable has a known constant value at a point.
- If so, replacing the variable by the constant simplifies and speeds-up the code.
- Easy within a basic block; harder across blocks.
Example

```
i = 0
n = 100

if i>=n goto ...

t1 = 8*i
A[t1] = 1
i = i+1

if t1>=800 goto ...

A[t1] = 1
t1 = t1+8
```
Global Common Subexpressions

Suppose block B has a computation of \(x+y \).

Suppose we are sure that when we reach this computation, we are sure to have:

1. Computed \(x+y \), and
2. Not subsequently reassigned \(x \) or \(y \).

Then we can hold the value of \(x+y \) and use it in B.
Example

\[a = x+y \]
\[b = x+y \]
\[c = x+y \]

\[t = x+y \]
\[a = t \]

\[t = x+y \]
\[a = t \]
\[b = t \]

\[c = t \]
Example --- Even Better

t = x+y
a = t

t = x+y
b = t

c = t

\[
\begin{align*}
t &= x+y \\
a &= t \\
b &= t \\
c &= t
\end{align*}
\]

\[
\begin{align*}
t &= x+y \\
a &= t \\
b &= t \\
c &= t
\end{align*}
\]