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Flow Graph Theory

Depth-First Ordering

Efficiency of Iterative Algorithms

Reducible Flow Graphs
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Roadmap

�Proper ordering of nodes of a flow 
graph speeds up the iterative 
algorithms: “depth-first ordering.”

�“Normal” flow graphs have a surprising 
property --- “reducibility” --- that 
simplifies several matters.

�Outcome: few iterations “normally” 
needed.
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Depth-First Search

�Start at entry.

�If you can follow an edge to an 
unvisited node, do so.

�If not, backtrack to your parent (node 
from which you were visited).
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Depth-First Spanning Tree

�Root = entry.

�Tree edges are the edges along which 
we first visit the node at the head.
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Example: DFST

1

53

42
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Depth-First Node Order

�The reverse of the order in which a DFS 
retreats from the nodes.

�Alternatively, reverse of postorder 
traversal of the tree.



7

Example: DF Order

1

35

24
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Four Kinds of Edges

1. Tree edges.

2. Forward edges (node to proper 
descendant).

3. Retreating edges (node to ancestor).

4. Cross edges (between two nodes, 
neither of which is an ancestor of the 
other.
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A Little Magic

�Of these edges, only retreating edges 
go from high to low in DF order.

�Most surprising: all cross edges go right 
to left in the DFST.

� Assuming we add children of any node 
from the left.
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Example: Non-Tree Edges

1

35

24

Retreating

Forward

Cross
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Roadmap

�“Normal” flow graphs are “reducible.”

�“Dominators” needed to explain 
reducibility.

�In reducible flow graphs, loops are well 
defined, retreating edges are unique 
(and called “back” edges).

�Leads to relationship between DF order 
and efficient iterative algorithm.
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Dominators

� Node d dominates node n if every path 
from the entry to n goes through d.

� Text has a forward-intersection iterative 
algorithm for finding dominators.

� Quick observations:

1. Every node dominates itself.

2. The entry dominates every node.
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Example: Dominators

1

35

24

{1,5}

{1,4}

{1,2,3}

{1,2}

{1}
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Common Dominator Cases

�The test of a while loop dominates all 
blocks in the loop body.

�The test of an if-then-else dominates all 
blocks in either branch.
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Back Edges

�An edge is a back edge if its head 
dominates its tail.

�Theorem: Every back edge is a 
retreating edge in every DFST of every 
flow graph.

� Converse almost always true, but not 
always.
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Example: Back Edges

1

35

24

{1,5}

{1,4}

{1,2,3}

{1,2}

{1}
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Reducible Flow Graphs

�A flow graph is reducible if every 
retreating edge in any DFST for that 
flow graph is a back edge.

�Testing reducibility: Take any DFST for 
the flow graph, remove the back edges, 
and check that the result is acyclic.
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Example: Remove Back Edges

1

35

24
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Example: Remove Back Edges

1

35

24

Remaining graph is acyclic.
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Why Reducibility?

�Folk theorem:  All flow graphs in 
practice are reducible.

�Fact: If you use only while-loops, for-
loops, repeat-loops, if-then(-else), 
break, and continue, then your flow 
graph is reducible.
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Example: Nonreducible Graph

A

CB

In any DFST, one
of these edges will
be a retreating edge.

A

B

C

A

B

C
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Why Care About 
Back/Retreating Edges?

1. Proper ordering of nodes during 
iterative algorithm assures number of 
passes limited by the number of 
“nested” back edges.

2. Depth of nested loops upper-bounds 
the number of nested back edges.
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DF Order and Retreating Edges

�Suppose that for a RD analysis, we visit 
nodes during each iteration in DF order.

�The fact that a definition d reaches a 
block will propagate in one pass along any 
increasing sequence of blocks.

�When d arrives along a retreating edge, it 
is too late to propagate d from OUT to IN.



24

Example: DF Order

1

35

24

d d

d

d

d

d

d d

d

d
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Depth of a Flow Graph

�The depth of a flow graph is the 
greatest number of retreating edges 
along any acyclic path.

�For RD, if we use DF order to visit 
nodes, we converge in depth+2 passes.

� Depth+1 passes to follow that number of 
increasing segments.

� 1 more pass to realize we converged.
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Example: Depth = 2

increasing

retreating

increasingincreasing

retreating
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Similarly . . .

�AE also works in depth+2 passes.

� Unavailability propagates along retreat-free 
node sequences in one pass.

�So does LV if we use reverse of DF 
order.

� A use propagates backward along paths 
that do not use a retreating edge in one 
pass.
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In General . . .

�The depth+2 bound works for any 
monotone framework, as long as 
information only needs to propagate 
along acyclic paths.

� Example: if a definition reaches a point, it 
does so along an acyclic path.
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Why Depth+2 is Good

�Normal control-flow constructs produce 
reducible flow graphs with the number 
of back edges at most the nesting 
depth of loops.

� Nesting depth tends to be small.
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Example: Nested Loops

3 nested while-
loops; depth = 3.

3 nested repeat-
loops; depth = 1
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Natural Loops

�The natural loop of a back edge a->b
is {b} plus the set of nodes that can 
reach a without going through b.

�Theorem: two natural loops are either 
disjoint, identical, or nested.
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Example: Natural Loops

1

35

24

Natural loop
of 3 -> 2

Natural loop
of 5 -> 1


