Flow Graph Theory

Depth-First Ordering
Efficiency of Iterative Algorithms
Reducible Flow Graphs



Roadmap

@ Proper ordering of nodes of a flow
graph speeds up the iterative
algorithms: “depth-first ordering.”

€ "Normal” flow graphs have a surprising
property --- “reducibility” --- that
simplifies several matters.

¢ : few iterations “normally”
needed.



Depth-First Search

& Start at entry.

@ If you can follow an edge to an
unvisited node, do so.

@ If not, backtrack to your parent (node
from which you were visited).



Depth-First Spanning Tree

€ Root = entry.

® Tree edges are the edges along which
we first visit the node at the head.



Example: DEST



Depth-First Node Order

&® The reverse of the order in which a DFS
from the nodes.

@ Alternatively, reverse of postorder
traversal of the tree.



: DF Order




Four Kinds of Edges

. Tree edges.

2. Forward edges (node to proper

A W

descendant).

Retreating edges (node to ancestor).

Cross edges (between two nodes,

neither of which is an ancestor of the
other.



A Little Magic

& Of these edges, only retreating edges
go from high to low in DF order.

@ Most surprising: all cross edges go right
to left in the DFST.

+ Assuming we add children of any node
from the left.



. Non-Tree Edges

Retreating

- Forward

10



Roadmap

€ "Normal” flow graphs are “reducible.”

€ "Dominators” needed to explain
reducibility.
@ In reducible flow graphs, loops are well

defined, retreating edges are unique
(and called “back” edges).

® Leads to relationship between DF order
and efficient iterative algorithm.

11



Dominators

€ Node d dominates node n if every path
from the entry to n goes through d.

€ Text has a forward-intersection iterative
algorithm for finding dominators.

€ Quick observations:
1. Every node dominates itself.
2. The entry dominates every node.

12



: Dominators

13



Common Dominator Cases

® The test of a while loop dominates all
blocks in the loop body.

& The test of an if-then-else dominates all
blocks in either branch.

14



Back Edges

@ An edge is a back edge if its head
dominates its tail.

¢ : Every back edge is a
retreating edge in every DFST of every
flow graph.

+ Converse almost always true, but not
always.

15



: Back Edges

16



Reducible Flow Graphs

@ A flow graph is reducible if every
retreating edge in any DFST for that
flow graph is a back edge.

¢ : Take any DFST for
the flow graph, remove the back edges,
and check that the result is acyclic.

17



: Remove Back Edges




: Remove Back Edges

Remaining graph is acyclic.

19



Why Reducibility?

¢ . All flow graphs in
practice are reducible.
¢ : If you use only while-loops, for-

loops, repeat-loops, if-then(-else),
break, and continue, then your flow
graph is reducible.

20



Example: Nonreducible Graph

(&) () (&)

() B) % ©
© (B)

In any DFST, one
of these edges will
be a retreating edge.

21



Why Care About
Back/Retreating Edges?

1. Proper ordering of nodes during
iterative algorithm assures number of
passes limited by the number of
“nested” back edges.

2. Depth of nested loops upper-bounds
the number of nested back edges.

22



DF Order and Retreating Edges

€ Suppose that for a RD analysis, we visit
nodes during each iteration in DF order.

® The fact that a definition d reaches a
block will propagate in one pass along any
increasing sequence of blocks.

® When d arrives along a retreating edge, it
is too late to propagate d from OUT to IN.

23



=xample: DF Order




Depth of a Flow Graph

& The depth of a flow graph is the
greatest number of retreating edges
along any acyclic path.

@ For RD, if we use DF order to visit
nodes, we converge in depth+2 passes.

+ Depth+1 passes to follow that number of
Increasing segments.

+ 1 more pass to realize we converged.

25



Example: Depth = 2

retreating retreating

> > > |

increasing increasing increasing

>

26



Similarly . . .

@ AE also works in depth+2 passes.

4 propagates along retreat-free
node sequences in one pass.
€ So does LV if we use of DF
order.

* A use propagates backward along paths
that do not use a retreating edge in one
pass.

27



In General . . .

@ The depth+2 bound works for any
monotone framework, as long as
information only needs to propagate
along acyclic paths.

. . if @ definition reaches a point, it
does so along an acyclic path.

28



Why Depth+2 is Good

€ Normal control-flow constructs produce
reducible flow graphs with the number
of back edges at most the nesting
depth of loops.

* Nesting depth tends to be small.

29



3 nested while-
loops; depth = 3.

: Nested Loops

3 nested repeat-
loops; depth =1

30



Natural Loops

& The natural loop of a back edge a->b
is {b} plus the set of nodes that can
reach a without going through b.

4 : two natural loops are either
disjoint, identical, or nested.

31



: Natural Loops

Natural loop
of 5-> 1 Natural loop

of 3->2



