Data-Flow Frameworks

Lattice-Theoretic Formulation
Meet-Over-Paths Solution
Monotonicity/Distributivity
Data-Flow Analysis Frameworks

◆ Generalizes and unifies each of the DFA examples from previous lecture.

◆ **Important components:**
 1. *Direction* D: forward or backward.
 2. *Domain* V (possible values for IN, OUT).
 3. *Meet operator* \land (effect of path confluence).
 4. *Transfer functions* F (effect of passing through a basic block).
Gary Kildall

◆ This theory was the thesis at U. Wash. of Gary Kildall.
◆ Gary is better known for CP/M, the first real PC operating system.
◆ There is an interesting story.
 ◆ Google query: kildall cpm
 ◆ www.freeenterpriseland.com/BOOK/KILDALL.html
Semilattices

V and \wedge form a \textit{semilattice} if for all x, y, and z in V:

1. $x \wedge x = x$ (\textit{idempotence}).
2. $x \wedge y = y \wedge x$ (\textit{commutativity}).
3. $x \wedge (y \wedge z) = (x \wedge y) \wedge z$ (\textit{associativity}).
4. \textit{Top} element \top such that for all x, $\top \wedge x = x$.
5. \textit{Bottom} element (optional) \bot such that for all x, $\bot \wedge x = \bot$.
Example: Semilattice

- $V = \text{power set of some set.}$
- $\land = \text{union.}$
- Union is idempotent, commutative, and associative.
- What are the top and bottom elements?
Partial Order for a Semilattice

- Say \(x \leq y \) iff \(x \land y = x \).
- Also, \(x < y \) iff \(x \leq y \) and \(x \neq y \).
- \(\leq \) is really a partial order:
 1. \(x \leq y \) and \(y \leq z \) imply \(x \leq z \) (proof in text).
 2. \(x \leq y \) and \(y \leq x \) iff \(x = y \). \textbf{Proof}: \(x \land y = x \) and \(y \land x = y \). Thus, \(x = x \land y = y \land x = y \).
Axioms for Transfer Functions

1. F includes the identity function.
 - Why needed? Constructions often require introduction of an empty block.

2. F is closed under composition.
 - Why needed?
 - The concatenation of two blocks is a block.
 - Transfer function for a block can be constructed from individual statements.
Good News!

- The problems from the last lecture fit the model.
 - **RD’s:** Forward, meet = union, transfer functions based on Gen and Kill.
 - **AE’s:** Forward, meet = intersection, transfer functions based on Gen and Kill.
 - **LV’s:** Backward, meet = union, transfer functions based on Use and Def.
Example: Reaching Definitions

- Direction $D = \text{forward}$.
- Domain $V = \text{set of all sets of definitions in the flow graph}$.
- $\land = \text{union}$.
- Functions $F = \text{all “gen-kill” functions of the form} \ f(x) = (x - K) \cup G$, where K and G are sets of definitions (members of V).
Example: Satisfies Axioms

- Union on a power set forms a semilattice (idempotent, commutative, associative).
- **Identity function**: let $K = G = \emptyset$.
- **Composition**: A little algebra.
Example: Partial Order

- For RD’s, $S \leq T$ means $S \cup T = S$.
- Equivalently $S \supseteq T$.
 - Seems “backward,” but that’s what the definitions give you.
- Intuition: \leq measures “ignorance.”
 - The more definitions we know about, the less ignorance we have.
 - $\top = “total \ ignorance.”$
DFA Frameworks

• \((D, V, \land, F)\).
• A flow graph, with an associated function \(f_B\) in \(F\) for each block \(B\).
• A boundary value \(v_{\text{ENTRY}}\) or \(v_{\text{EXIT}}\) if \(D = \text{forward}\) or backward, respectively.
Iterative Algorithm (Forward)

\(\text{OUT}[\text{entry}] = v_{\text{ENTRY}}; \)
for (other blocks B) \(\text{OUT}[B] = T; \)
while (changes to any OUT)
for (each block B) {
 \(\text{IN}(B) = \land \text{ predecessors } P \text{ of } B \ \text{OUT}(P); \)
 \(\text{OUT}(B) = f_B(\text{IN}(B)); \)
}
Iterative Algorithm (Backward)

- Same thing --- just:
 1. Swap IN and OUT everywhere.
 2. Replace entry by exit.
What Does the Iterative Algorithm Do?

◆ **MFP** (*maximal fixedpoint*) = result of iterative algorithm.
◆ **MOP** = meet over all paths from entry to a given point, of the transfer function along that path applied to v_{ENTRY}.
◆ **IDEAL** = ideal solution = meet over all executable paths from entry to a point.
Transfer Function of a Path

\[f_1 \rightarrow f_2 \rightarrow \ldots \rightarrow f_{n-1} \rightarrow B \]

\[f_{n-1}(\ldots f_2(f_1(v_{ENTRY}))\ldots) \]
Maximum Fixedpoint

◆ **Fixedpoint** = solution to the equations used in iteration:
 \[
 \text{IN}(B) = \bigwedge \text{predecessors P of B} \ \text{OUT}(P);
 \]
 \[
 \text{OUT}(B) = f_B(\text{IN}(B));
 \]

◆ **Maximum** = any other solution is \(\leq \) the result of the iterative algorithm (MFP).
MOP and IDEAL

- All solutions are really meets of the result of starting with v_{ENTRY} and following some set of paths to the point in question.
- If we don’t include at least the IDEAL paths, we have an error.
- But try not to include too many more.
 - Less “ignorance,” but we “know too much.”
MOP Versus IDEAL --- (1)

◆ At each block B, $\text{MOP}[B] \leq \text{IDEAL}[B]$.
 ▶ I.e., the meet over many paths is \leq the meet over a subset.
 ▶ Example: $x \land y \land z \leq x \land y$ because
 $x \land y \land z \land x \land y = x \land y \land z$.

◆ Intuition: Anything not $\leq \text{IDEAL}$ is not safe, because there is some executable path whose effect is not accounted for.
MOP Versus IDEAL --- (2)

Conversely: any solution that is \leq IDEAL accounts for all executable paths (and maybe more paths), and is therefore conservative (safe), even if not accurate.
MFP Versus MOP --- (1)

- **Is MFP ≤ MOP?**
 - If so, then since MOP ≤ IDEAL, we have MFP ≤ IDEAL, and therefore MFP is safe.

- **Yes, but … requires two assumptions about the framework:**
 1. “Monotonicity.”
 2. *Finite height* (no infinite chains \(\ldots < x_2 < x_1 < x \)).
MFP Versus MOP --- (2)

- **Intuition**: If we computed the MOP directly, we would compose functions along all paths, then take a big meet.
- But the MFP (iterative algorithm) alternates compositions and meets arbitrarily.
Monotonicity

◆ A framework is *monotone* if the functions respect \leq. That is:
◆ If $x \leq y$, then $f(x) \leq f(y)$.
◆ Equivalently: $f(x \land y) \leq f(x) \land f(y)$.
◆ **Intuition**: it is conservative to take a meet before completing the composition of functions.
Good News!

- The frameworks we’ve studied so far are all monotone.
 - Easy proof for functions in Gen-Kill form.
- And they have finite height.
 - Only a finite number of defs, variables, etc. in any program.
Two Paths to B That Meet Early

In MFP, Values x and y get combined too soon.

Since $f(x \land y) \leq f(x) \land f(y)$, it is as if we added nonexistent paths.

MOP considers paths independently and combines at the last possible moment.
Distributive Frameworks

Strictly stronger than monotonicity is the distributivity condition:

\[f(x \land y) = f(x) \land f(y) \]
Even More Good News!

- All the Gen-Kill frameworks are distributive.
- If a framework is distributive, then combining paths early doesn’t hurt.
 - MOP = MFP.
 - That is, the iterative algorithm computes a solution that takes into account all and only the physical paths.