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Data-Flow Analysis

Proving Little Theorems

Data-Flow Equations

Major Examples
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An Obvious Theorem

boolean x = true;

while (x) {

. . . // no change to x

}

�Doesn’t terminate.

�Proof: only assignment to x is at top, so 
x is always true.
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As a Flow Graph

x = true

if x == true

“body”
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Formulation: Reaching Definitions

�Each place some variable x is assigned 
is a definition.

�Ask: for this use of x, where could x
last have been defined.

�In our example: only at x=true.
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Example: Reaching Definitions

d1: x = true

if x == true

d2: a = 10

d2

d1

d1d2
d1
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Clincher

�Since at x == true, d1 is the only 

definition of x that reaches, it must be 
that x is true at that point.

�The conditional is not really a 
conditional and can be replaced by a 
branch.
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Not Always That Easy

int i = 2; int j = 3;

while (i != j) {

if (i < j) i += 2;

else j += 2;

}

�We’ll develop techniques for this 
problem, but later …
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The Flow Graph

d1: i = 2

d2: j = 3

if i != j

if i < j

d4: j = j+2d3: i = i+2

d1, d2, d3, d4

d1
d3 d4

d2

d2, d3, d4
d1, d3, d4

d1, d2, d3, d4d1, d2, d3, d4
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DFA Is Sufficient Only

�In this example, i can be defined in two 
places, and j in two places.

�No obvious way to discover that i!=j

is always true.

�But OK, because reaching definitions is 
sufficient to catch most opportunities 
for constant folding (replacement of a 
variable by its only possible value).
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Be Conservative!

�(Code optimization only)

�It’s OK to discover a subset of the 
opportunities to make some code-
improving transformation.

�It’s not OK to think you have an 
opportunity that you don’t really have.
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Example: Be Conservative

boolean x = true;

while (x) {

. . . *p = false; . . .

}

�Is it possible that p points to x?
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As a Flow Graph

d1: x = true

if x == true

d2: *p = false

d1

d2

Another
def of x
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Possible Resolution

�Just as data-flow analysis of “reaching 
definitions” can tell what definitions of x
might reach a point, another DFA can 
eliminate cases where p definitely does 
not point to x.

�Example: the only definition of p is 
p = &y and there is no possibility that 

y is an alias of x.
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Reaching Definitions Formalized

� A definition d of a variable x is said to 
reach a point p in a flow graph if:

1. Every path from the entry of the flow 
graph to p has d on the path, and

2. After the last occurrence of d there is no 
possibility that x is redefined.
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Data-Flow Equations --- (1)

� A basic block can generate a 
definition.

� A basic block can either

1. Kill a definition of x if it surely redefines 
x.

2. Transmit a definition if it may not
redefine the same variable(s) as that 
definition.
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Data-Flow Equations --- (2)

� Variables:

1. IN(B) = set of definitions reaching the 
beginning of block B.

2. OUT(B) = set of definitions reaching the 
end of B.
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Data-Flow Equations --- (3)

� Two kinds of equations:

1. Confluence equations : IN(B) in terms of 
outs of predecessors of B.

2. Transfer equations : OUT(B) in terms of 
of IN(B) and what goes on in block B. 
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Confluence Equations

IN(B) = ∪predecessors P of B OUT(P)

P2

B

P1

{d1, d2, d3}

{d2, d3}{d1, d2}
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Transfer Equations

�Generate a definition in the block if its 
variable is not definitely rewritten later 
in the basic block.

�Kill a definition if its variable is 
definitely rewritten in the block.

�An internal definition may be both killed 
and generated.
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Example: Gen and Kill

d1: y = 3 

d2: x = y+z

d3: *p = 10

d4: y = 5  

IN = {d2(x), d3(y), d3(z), d5(y), d6(y), d7(z)} 

Kill includes {d1(x), d2(x),
d3(y), d5(y), d6(y),…} 

Gen = {d2(x), d3(x),
d3(z),…, d4(y)} 

OUT = {d2(x), d3(x), d3(z),…, d4(y), d7(z)} 
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Transfer Function for a Block

�For any block B:

OUT(B) = (IN(B) – Kill(B)) ∪ Gen(B)
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Iterative Solution to Equations

�For an n-block flow graph, there are 2n 
equations in 2n unknowns.

�Alas, the solution is not unique.

� Standard theory assumes a field of 
constants; sets are not a field.

�Use iterative solution to get the least 
fixedpoint.

� Identifies any def that might reach a point.
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Iterative Solution --- (2)

IN(entry) = ∅;

for each block B do OUT(B)= ∅;

while (changes occur) do

for each block B do {

IN(B) = ∪predecessors P of B OUT(P);

OUT(B) = (IN(B) – Kill(B)) ∪ Gen(B);

}
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Example: Reaching Definitions

d1: x = 5

if x == 10

d2: x = 15

B1

B3

B2

IN(B1) = {}

OUT(B1) = {

OUT(B2) = {

OUT(B3) = {

d1}

IN(B2) = { d1,

d1,

IN(B3) = { d1,

d2}

d2}

d2}

d2}
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Aside: Notice the Conservatism

�Not only the most conservative assumption 
about when a def is killed or gen’d.

�Also the conservative assumption that any 
path in the flow graph can actually be 
taken.

�Fine, as long as the optimization is 
triggered by limitations on the set of RD’s, 
not by the assumption that a def does not 
reach.
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Another Data-Flow Problem: 
Available Expressions

�An expression x+y is available at a 
point if no matter what path has been 
taken to that point from the entry, x+y
has been evaluated, and neither x nor y
have even possibly been redefined.

�Useful for global common-subexpression 
elimination. 
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Equations for AE

�The equations for AE are essentially the 
same as for RD, with one exception.

�Confluence of paths involves 
intersection of sets of expressions 
rather than union of sets of definitions.
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Gen(B) and Kill(B)

�An expression x+y is generated if it is 
computed in B, and afterwards there is 
no possibility that either x or y is 
redefined.

�An expression x+y is killed if it is not 
generated in B and either x or y is 
possibly redefined.
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Example

x = x+y

z = a+b
Generates
a+b

Kills x+y,
w*x, etc.

Kills z-w,
x+z, etc.
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Transfer Equations

�Transfer is the same idea:

OUT(B) = (IN(B) – Kill(B)) ∪ Gen(B)
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Confluence Equations

�Confluence involves intersection, 
because an expression is available 
coming into a block if and only if it is 
available coming out of each 
predecessor.

IN(B) = ∩predecessors P of B OUT(P)



32

Iterative Solution

IN(entry) = ∅;

for each block B do OUT(B)= ALL;

while (changes occur) do

for each block B do {

IN(B) = ∩predecessors P of B OUT(P);

OUT(B) = (IN(B) – Kill(B)) ∪ Gen(B);

}
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Why It Works

� An expression x+y is unavailable at 
point p iff there is a path from the 
entry to p that either:

1. Never evaluates x+y, or

2. Kills x+y after its last evaluation.

� IN(entry) = ∅ takes care of (1).

� OUT(B) = ALL, plus intersection 
during iteration handles (2).
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Example

point p

Entry

x+y
never
gen’d

x+y killed

x+y
never
gen’d
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Subtle Point

�It is conservative to assume an 
expression isn’t available, even if it is.

�But we don’t have to be “insanely 
conservative.”

� If after considering all paths, and assuming 
x+y killed by any possibility of redefinition, 
we still can’t find a path explaining its 
unavailability, then x+y is available.
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Live Variable Analysis

�Variable x is live at a point p if on 
some path from p, x is used before it is 
redefined.

�Useful in code generation: if x is not 
live on exit from a block, there is no 
need to copy x from a register to 
memory.
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Equations for Live Variables

�LV is essentially a “backwards” version 
of RD.

�In place of Gen(B): Use(B) = set of 
variables x possibly used in B prior to 
any certain definition of x.

�In place of Kill(B): Def(B) = set of 
variables x certainly defined before any 
possible use of x.
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Transfer Equations

�Transfer equations give IN’s in terms of 
OUT’s:

IN(B) = (OUT(B) – Def(B)) ∪ Use(B)
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Confluence Equations

�Confluence involves union over 
successors, so a variable is in OUT(B) if 
it is live on entry to any of B’s 
successors.

OUT(B) = ∪successors S of B IN(S)
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Iterative Solution

OUT(exit) = ∅;

for each block B do IN(B)= ∅;

while (changes occur) do

for each block B do {

OUT(B) = ∪successors S of B IN(S);

IN(B) = (OUT(B) – Def(B)) ∪ Use(B);

}


