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Everything Else About Data 
Flow Analysis

Flow- and Context-Sensitivity 
Logical Representation

Pointer Analysis

Interprocedural Analysis
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Three Levels of Sensitivity

�In DFA so far, we have cared about 
where in the program we are.

� Called flow-sensitivity.

�But we didn’t care how we got there.

� Called context-sensitivity.

�We could even care about neither.

� Example: where could x ever be defined in 
this program?
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Flow/Context Insensitivity

�Not so bad when program units are 
small (few assignments to any 
variable).

�Example: Java code often consists of 
many small methods.

� Remember: you can distinguish variables 
by their full name, e.g., 
class.method.block.identifier.
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Context Sensitivity

�Can distinguish paths to a given point.

�Example: If we remembered paths, we 
would not have the problem in the 
constant-propagation framework where 
x+y = 5 but neither x nor y is constant 
over all paths.
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The Example Again

x = 3

y = 2

x = 2

y = 3

z = x+y
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An Interprocedural Example

int id(int x) {return x;}

void p() {a=2; b=id(a);…}

void q() {c=3; d=id(c);…}

�If we distinguish p calling id from q
calling id, then we can discover b=2 
and d=3.

�Otherwise, we think b, d = {2, 3}.
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Context-Sensitivity --- (2)

�Loops and recursive calls lead to an 
infinite number of contexts.

�Generally used only for interprocedural
analysis, so forget about loops.

�Need to collapse strong components of 
the calling graph to a single group.

�“Context” becomes the sequence of 
groups on the calling stack.
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Example: Calling Graph

main

p

sr

q

t Contexts:

Green
Green, pink
Green, yellow
Green, pink, yellow
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Comparative Complexity

�Insensitive: proportional to size of 
program (number of variables).

�Flow-Sensitive: size of program, 
squared (points times variables).

�Context-Sensitive: worst-case 
exponential in program size (acyclic
paths through the code).
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Logical Representation

�We have used a set-theoretic 
formulation of DFA.

� IN = set of definitions, e.g.

�There has been recent success with a 
logical formulation, involving predicates.

�Example: Reach(d,x,i) = “definition d of 
variable x can reach point i.”
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Comparison: Sets Vs. Logic

�Both have an efficiency enhancement.

� Sets: bit vectors and boolean ops.

� Logic: BDD’s, incremental evaluation.

�Logic allows integration of different 
aspects of a flow problem.

� Think of PRE as an example.  We needed 6 
stages to compute what we wanted.
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Datalog --- (1)

Atom = Reach(d,x,i)

Literal = Atom or NOT Atom

Rule = Atom :- Literal & … & Literal

Predicate

Arguments:
variables or constants

The body :
For each assignment of values
to variables that makes all these
true …

Make this
atom true
(the head ).
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Example: Datalog Rules

Reach(d,x,j) :- Reach(d,x,i) &

StatementAt(i,s) &

NOT Assign(s,x) &

Follows(i,j)

Reach(s,x,j) :- StatementAt(i,s) &

Assign(s,x) &

Follows(i,j)
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Datalog --- (2)

�Intuition: subgoals in the body are 
combined by “and” (strictly speaking: 
“join”).

�Intuition: Multiple rules for a predicate 
(head) are combined by “or.”
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Datalog --- (3)

�Predicates can be implemented by 
relations (as in a database).

�Each tuple, or assignment of values to 
the arguments, also represents a 
propositional (boolean) variable.
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EDB Vs. IDB Predicates

�Some predicates come from the 
program, and their tuples are computed 
by inspection.

� Called EDB, or extensional database
predicates.

�Others are defined by the rules only.

� Called IDB, or intensional database
predicates.
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Iterative Algorithm for Datalog

�Start with the EDB predicates = 
“whatever the code dictates,” and with 
all IDB predicates empty.

�Repeatedly examine the bodies of the 
rules, and see what new IDB facts can 
be discovered from the EDB and 
existing IDB facts.
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Seminaive Evaluation

�Remember that a new fact can be 
inferred by a rule in a given round only 
if it uses in the body some fact 
discovered on the previous round.

�Same idea applies to set-theoretic DFA, 
but the bit-vector implementation 
makes the idea ineffective.
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Example: Seminaive

Path(x,y) :- Arc(x,y)

Path(x,y) :- Path(x,z) & Path(z,y)
NewPath(x,y) = Arc(x,y); Path(x,y) = ∅;

while (NewPath != ∅) do {

NewPath(x,y) = {(x,y) | NewPath(x,z)

&& Path(z,y) || Path(x,z) &&

NewPath(z,y)} – Path(x,y);

Path(x,y) = Path(x,y) ∪ NewPath(x,y);

}
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Stratification

�A risk occurs if there are negated 
literals involved in a recursive predicate.

� Leads to oscillation in the result.

�Requirement for stratification :

� Must be able to order the IDB predicates 
so that if a rule with P in the head has   
NOT Q in the body, then Q is either EDB or 
earlier in the order than P.
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Example: Nonstratification

P(x) :- E(x) & NOT P(x)

�If E(1) is true, is P(1) true?

�It is after the first round.

�But not after the second.

�True after the third, not after the 
fourth,…
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Example: Stratification

�PRE is an example of stratified logic.

�Each of the analyses depends on 
previous ones, some negatively.

�But there is no recursion or iteration 
involving negation of the data-flow 
values we are trying to compute.
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PRE Example

Anticipated(B) :- (some rules)

Available(B) :- (some other rules)

Earliest(B) :- Anticipated(B) & NOT Available(B)

Postponable(B) :- (some rules involving Earliest)

Latest(B) :- (some rules involving Earliest,

Postponable, NOT Earliest,

and NOT Postponable)

Used(B) :- (rules involving Latest)
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New Topic: Pointer Analysis

� We shall consider Andersen’s 
formulation of Java object references.

� Flow/context insensitive analysis.

� Cast of characters:

1. Local variables, which point to:

2. Heap objects, which may have fields that 
are references to other heap objects.
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Representing Heap Objects

�A heap object is named by the 
statement in which it is created.

�Note many run-time objects may have 
the same name.

�Example: h: T v = new T; says 

variable v can point to (one of) the 
heap object(s) created by statement h.

v h
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Other Relevant Statements

�v.f = w makes the f field of the heap 

object h pointed to by v point to what 
variable w points to.

v

h g

w

i
f f
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Other Statements --- (2)

�v = w.f makes v point to what the f 

field of the heap object h pointed to by 
w points to.

v

hg

wi

f
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Other Statements --- (3)

�v = w makes v point to whatever w 

points to.

� Interprocedural Analysis : Also models 
copying an actual parameter to the 
corresponding formal or return value to a 
variable.

v

h

w
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EDB Relations

�The facts about the statements in the 
program and what they do to pointers 
are accumulated and placed in several 
EDB relations.

�Example: there would be an EDB 
relation Copy(To,From) whose tuples 
are the pairs (v,w) such that there is a 
copy statement v=w. 
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Convention for EDB

�Instead of using EDB relations for the 
various statement forms, we shall 
simply use the quoted statement itself 
to stand for an atom derived from the 
statement.

�Example: “v=w” stands for Copy(v,w).
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IDB Relations

�Pts(V,H) will get the set of pairs (v,h) 
such that variable v can point to heap 
object h.

�Hpts(H1,F,H2) will get the set of triples 
(h,f,g) such that the field f of heap 
object h can point to heap object g.
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Datalog Rules

1. Pts(V,H) :- “H: V = new T”

2. Pts(V,H) :- “V=W” & Pts(W,H)

3. Pts(V,H) :- “V=W.F” & Pts(W,G) & 
Hpts(G,F,H)

4. Hpts(H,F,G) :- “V.F=W” & Pts(V,H) & 
Pts(W,G)
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Example

T p(T x) {

h: T a = new T;

a.f = x;

return a;

}

void main() {

g: T b = new T;

b = p(b);

b = b.f;

}
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Apply Rules Recursively --- Round 1

T p(T x) {h: T a = new T;

a.f = x; return a;}

void main() {g: T b = new T;

b = p(b); b = b.f;}

Pts(a,h)

Pts(b,g)



35

Apply Rules Recursively --- Round 2

T p(T x) {h: T a = new T;

a.f = x; return a;}

void main() {g: T b = new T;

b = p(b); b = b.f;}

Pts(a,h)

Pts(b,g)

Pts(b,h)

Pts(x,g)
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Apply Rules Recursively --- Round 3

T p(T x) {h: T a = new T;

a.f = x; return a;}

void main() {g: T b = new T;

b = p(b); b = b.f;}

Pts(a,h)

Pts(b,g)

Pts(x,g)

Pts(b,h)

Hpts(h,f,g)Pts(x,h)
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Apply Rules Recursively --- Round 4

T p(T x) {h: T a = new T;

a.f = x; return a;}

void main() {g: T b = new T;

b = p(b); b = b.f;}

Pts(a,h)

Pts(b,g)

Pts(x,g)

Pts(b,h)

Pts(x,h) Hpts(h,f,g)

Hpts(h,f,h)
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Extension to Flow Sensitivity

�IDB predicates need additional 
arguments B, I.

� B = block number.

� I = position within block, 0, 1,…, n for     
n -statement block.

• Position 0 is before first statement, position 1 is 
between 1st and 2nd statement, etc.
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Example of Rules: Flow 
Sensitive Pointer Analysis

Pts(V,H,B,I+1) :- “B,I: H: V = new T”

Pts(V,G,B,I+1) :- “B,I: W = new T” & 
V != W & Pts(V,G,B,I)

Pts(V,G,B,I+1) :- “B,I: W.f = X” & 
Pts(V,G,B,I)

Pts(V,G,B,0) :- Pts(V,G,C,n ) & “C is a 
predecessor block of B with n statements”

I is local,
H is a global
index of
object-creating
statements.

Notice W=V OK

Handles all control-flow
information within the
flow graph. Hpts similar.
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Adding Context Sensitivity

�Include a component C = context.

� C doesn’t change within a function.

� Call and return can extend the context if 
the called function is not mutually recursive 
with the caller.
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Example of Rules: Context 
Sensitive

Pts(V,H,B,I+1,C) :- “B,I: V=W” &  
Pts(W,H,B,I,C)

Pts(X,H,B0,0,D) :- Pts(V,H,B,I,C) &      
“B,I: call P(…,V,…)” &                       
“X is the corresponding actual to V in P” 
& “B0 is the entry of P” & 
“context D is C extended by P”


