Constant Propagation

A More Complex Semilattice
A Nondistributive Framework
The Point

- Instead of doing constant folding by RD’s, we can maintain information about what constant, if any, a variable has at each point.
- An interesting example of a DF framework not of the gen-kill type.
- A simple version of static type analysis.
Domain of Values

- The set of values propagated is the set of mappings from variables to values of their type.

- **Example**: \([x \rightarrow 5, \ s \rightarrow \text{“cat”}, \ y \rightarrow \text{UNDEF}, \ z \rightarrow \text{NAC}]\)

- **UNDEF** = “We don’t yet know anything.”
- **NAC** = “Not a constant” = we know too much for any constant to satisfy.”
The Semilattice

◆ A *product lattice*, one component for each variable.

◆ Each component lattice consists of:
 1. UNDEF (the top element).
 2. NAC (the bottom element).
 3. All values from a type, e.g., integers, strings.
Picture
The Meet Operation

The diagram represents \leq. That is:
1. Any constant \leq UNDEF.
2. NAC \leq any constant.

Equivalently, for any constants x and y:
1. UNDEF \land x = x.
2. NAC \land x = NAC.
3. NAC \land UNDEF = NAC.
4. x \land x = x but x \land y = NAC if x \neq y.
The Product Lattice

- Call each of the lattices just described a *diamond lattice*.
- The lattices we use are products of diamond lattices.
- For the product $D_1 \times D_2 \times \ldots \times D_n$, the values are $[v_1, v_2, \ldots, v_n]$, where each v_i is in D_i.
Meet in Product Lattices

\[[v_1, v_2, \ldots, v_n] \land [w_1, w_2, \ldots, w_n] = [v_1 \land w_1, v_2 \land w_2, \ldots, v_n \land w_n] = \text{componentwise meet}. \]

In terms of \(\leq \):

\[[v_1, v_2, \ldots, v_n] \leq [w_1, w_2, \ldots, w_n] \]

if and only if \(v_i \leq w_i \) for all \(i \).
Intuitive Meaning

1. If variable x is mapped to UNDEF (i.e., in the product-lattice value, the component for x is UNDEF), then we do not know anything about x.

2. If x is mapped to constant c, then we only know of paths where x has value c.

3. If x is mapped to NAC, we know about paths where x has different values.
Product-Lattice Values as Mappings

- Think of a lattice element as a mapping from variables to values \{UNDEF, NAC, constants\}.
- Lattice element is m, and m(x) is the value to which m maps variable x.
Transfer Functions --- (1)

- Transfer functions map lattice elements to lattice elements.
- Suppose m is the variable-\to constant mapping just before a statement $x = y + z$.
- Let $f(m) = m'$ be the transfer function associated with $x = y + z$.
Transfer Functions --- (2)

- If \(m(y) = c \) and \(m(z) = d \), then \(m'(x) = c + d \).
- If \(m(y) = \text{NAC} \) or \(m(z) = \text{NAC} \), then \(m'(x) = \text{NAC} \).
- Otherwise, if \(m(y) = \text{UNDEF} \) or \(m(z) = \text{UNDEF} \), then \(m'(x) = \text{UNDEF} \).
- \(m'(w) = m(w) \) for all \(w \) other than \(x \).
Transfer Functions --- (3)

- Similar rules for other types of statements (see text).
- For a block, compose the transfer functions of the individual statements.
Iterative Algorithm

- It’s a plain-ol’ Forward iteration, with the meet and transfer functions as given.
- The framework is monotone and has bounded depth, so it converges to a safe solution.
Finite Depth

◆ The value of any IN or OUT can only decrease.
 ✤ Verify from transfer functions (monotonicity).
◆ Values are finite-length vectors, and each component can only decrease twice.
 ✤ From UNDEF to a constant to NAC.
◆ If no IN or OUT decreases in any component in a round, we stop.
Monotonicity --- (1)

- Need to show $m \leq n$ implies $f(m) \leq f(n)$.
- Show for function f associated with a single statement.
- Composition of monotone functions is monotone.
- That’s enough to show monotonicity for all possible transfer functions.
Monotonicity --- (2)

- **One case**: let \(f \) be the function associated with \(x = y + z \).

- **One subcase**: \(m(y) = c; m(z) = d; n(y) = c; n(z) = \text{UNDEF}; m(w) = n(w) \) otherwise. Thus, \(m \leq n \).

- Then \((f(m))(x) = c+d \) and \((f(n))(x) = \text{UNDEF} \).

- Thus \((f(m))(w) \leq (f(n))(w) \) for all \(w \).
Nondistributivity

◆ First example of a framework that is not distributive.
◆ Thus, iterative solution is not the MOP.
◆ We’ll show an example where MFP appears to include impossible paths.
Example: Nondistributivity

Iterative solution finds z is “not a constant.”
Example: Nondistributivity --- (2)

MOP has $z = 5$.

\begin{align*}
x &\rightarrow 2 \\
y &\rightarrow 3 \\
x &\rightarrow 3 \\
y &\rightarrow 2
\end{align*}

\begin{align*}
x &\rightarrow \text{UNDEF} \\
y &\rightarrow \text{UNDEF}
\end{align*}
Example: Nondistributivity --- (3)

- We observe that MFP differs from the MOP solution.
- That proves the framework is not distributive.
 - Because every distributive framework has $MFP = MOP$.