
An introduction tocompiling functional languages

Xavier LeroyINRIA Rocquencourt, projet Cristalhttp://pauillac.inria.fr/~xleroy/
1

Prologue

What is a functional language?
2

Functions as �rst-class valuesA functional language is a language where the notion offunction is taken seriously.� Functions are �rst-class objects in the language:just like any other language object, they can be{ passed as parameters to other functions;{ returned as function results;{ stored in data structures.� Functions can be computed (in some sense).
3

ExamplesDerivative of a
oating-point function:# let deriv f h =(fun x -> (f(x +. h) -. f(x -. h)) /. (2.0 *. h));;val deriv = <fun># let d_sin = deriv sin 1e-5;;val d_sin = <fun># d_sin 0.0;;- = 0.999999999983

4

Main uses of functions as �rst-class values� Facilitates reuse of generic functions.Example: the List.map list transformer:List.map f [e1; : : : ; en] = [f(e1); : : : ; f(en)]� Supports user-de�ned control structures (e.g. iterators).� Allows mixing data and functions in data structures
5

Non-functional languages� In C:{ code pointers are �rst-class values;{ but functions cannot depend on parameters to otherfunctions.� In Pascal:{ nested functions are supported;{ but functions cannot be returned as a result, nor put indata structures.

6

Declarative vs. imperativeFunctional languages promote a more abstract (more\mathematical") view of programming than imperativelanguages.Example: the let construct names an intermediate result.No need to declare a variable, then assign it with the result.let f x = function f(x: real): reallet cosx = cos(x) in begincosx *. cosx var cosx: real;cosx := cos(x);f := cosx *. cosx;end 7

Declarative vs. imperative, 2Data structures are allocated and initialized in one construct.No need to allocate space for the structure, then �ll in the �elds.type point = typedef struct fdouble x, y;g *point;fx: float; y: floatg point scale(point pt, double s) flet scale pt s = point res = malloc(sizeof(*pt));fx = pt.x *. s; res->x = pt->x * s;y = pt.y *. sg res->y = pt->y * s;return res;gAlso:- pointers are implicit;- automatic memory management (garbage collection);- impossible to have partially initialized objects. 8

Purely functional or not?� \Pure" functional languages prohibit entirely assignment tovariables and in-place modi�cation to data structures.Example: Haskell.Goes along with lazy evaluation (on-demand computation ofexpressions).� Other functional languages are equipped with full imperativepower as well.Example: ML, Scheme.Still, these languages encourage declarative programming.
9

Datatypes and pattern-matchingMost functional languages have high-level data structures andpattern-matching to operate over these:type expression = Const of int | Var| Sum of expression * expression| Prod of expression * expressionlet expr = Prod(Sum(Var, Const 1), Var)let rec deriv e =match e withConst n -> Const 0| Var -> Const 1| Sum(e1,e2) -> Sum(deriv e1, deriv e2)| Prod(e1,e2) -> Sum(Prod(e1, deriv e2), Prod(deriv e1, e2))10

Strong static typing with type inference (Hindley-Milner)Most functional languages are statically strongly typed:# "xyz" ^ 123This expression has type int but is here used with type stringThe compiler infers types (no type declarations on functions):# let geom_mean a b = sqrt(a *. b)val geom_mean : float -> float -> floatGeneric functions receive polymorphic types:List.map: ('a -> 'b) -> 'a list -> 'b list for all types 'a,'b# List.map (fun x -> x+1) [1;2;3]# List.map string_of_int [1;2;3] 11

SummaryCompilers for functional languages need to deal with (or takeadvantage of) the following features:ML Haskell SchemeFull functionality ? ? ?Declarative style ? ? ?Imperative style ? ?Lazy evaluation ?High-level data structures ? ? ?Automatic memory management ? ? ?Pattern-matching ? ?Strong static typing ? ?Polymorphism ? ? ?
12

Outline1. Compiling full functionality: closures2. Optimizing full functionality:
ow analyses3. Data representation issues4. Code generation issuesNot treated in this tutorial:1. Lazy evaluation (see Peyton-Jones' book).2. Compilation of pattern matching (same).3. Garbage collection techniques (see Paul Wilson's surveys).13

Part 1

Compiling full functionality: closures
14

A naive approachWhen evaluating fun x -> e, generate a block of code atrun-time and return a pointer to that code:let scale n = fun x -> x * nlet f = scale 2 let f = scale 10res <- arg res <- argmul res, 2 mul res, 10return returnProblems:- run-time code generation is expensive;- for big functions, this allocates large blocks of code. 15

Towards a better solutionNotice that all the generated blocks of code share the same\shape": they di�er only in the values of the n variable at thetime of evaluation of scale n.res <- argmul res, <the value of n passed to scale>return resIdea: share the common code and put the varying parts (i.e. thevalue of n) in some external data structure.

16

Closures (P. J. Landin, 1964)All functional values are represented by closures.Closures are heap-allocated data structures containing:� a pointer to a �xed piece of code computing the functionresult;� an environment: a record providing values for the freevariables of the function.(The free variables of the function are all variables appearing inthe function that are neither parameters to the function, norlet-bound inside the function.) 17

Example of closure

�10 res <- arg1n <- arg0.nmul res, nreturn

return value of scale 10

(heap-allocated block)
(�xed code block)

18

The compilation scheme for functions and applications[[a(b)]] =let clos = [[a]] in clos.code clos [[b]][[fun x -> e]] =let code_f clos x =let v = clos.env_v and w = clos.env_w and ... in [[e]]in f code = code_f; env_v = v; env_w = w; ... gwhere v, w, : : : are the variables free in fun x -> e.Note: the function code_f above has no free variables and isrepresented by a pointer to its (�xed) code. 19

Translating functions into an object-oriented languageClosures are a special case of classes and objects having onlyone apply method.For the scale example, we get:class scale {private int env_n;int apply(int x) { return x * env_n; }scale(int n) { env_n = n; }}Build the closure = instantiate the class (new scale(10)).Apply the closure = call its apply method (s.apply(5)). 20

Closure representation strategies� When compiling an application, nothing is known about theclosure being called (this can be the closure of any functionin the program).! The code pointer must be at a �xed, predictable positionin the closure block.� The environment part of a closure is not accessed duringapplication. The structure of the environment matters onlyto the code that builds the closure and the code for thefunction body.! Considerable
exibility in choosing the layout for theenvironment part. 21

One-block closurecodev1...vn

Two-block closures(with environnent sharing)
v1...vn

�code 1 �code 2

Linked closurescode 3v1...vn�

code 2vn+1...vp�

code 1vp+1...vq 22

Choosing a closure representationTime trade-o�:� One-block closures: slower to build; faster access tovariables.� Linked closures: faster to build; slower access to variables.Space trade-o�:� Minimal environments: (bind only the free variables)fewer opportunities for sharing; avoid space leaks.� Larger environments: (may bind more variables)more opportunities for sharing; may cause severe space leaks.Modern implementations use one-block closures with minimalenvironments. 23

Recursive functionsRecursive functions need access to their own closure:let rec f x = ... List.map f l ...That's easy because the code for the function receives theclosure itself as extra argument:let rec code_f clos x =let f = clos inlet v = clos.env_v in... List.map f l ... inlet f = {code = code_f; env_v = v}

24

Mutually recursive functionsMutually recursive functions need access to the closures of allfunctions in the mutual recursive de�nition:let rec f x = ... List.map f l1 ... List.map g l2 ...and g y = ... List.map f l3 ...� The closure for f contains a pointer to that of g andconversely (cyclic closures).� Share a closure between f and g using in�x pointers(Appel, 1992).

25

code f�v1...vn
code g�w1...wk

closure for f closure for gCyclic closures

code fcode gv1...vnw1...wk
closure for fclosure for g

Shared closure
26

Part 2

Optimizing full functionality:
ow analyses
27

The overhead of closure callingThe introduction of closures makes function applications moreexpensive:� one load (to recover the code pointer from the closure)� one call to a computed address (to call the code pointer)The latter is expensive on modern processors (pipeline stall).Contrast with a non-functional language:� one call to a known address (no pipeline problems);� or even no overhead at all if we inline expand the body ofthe called function (if it is small enough). 28

Opportunities for optimizationsThe overhead of closures can be avoided in many practicalsituations:� Many function applications always call the same function:let rec f x = ... f e Sort.list order l ... (no other call to Sort.list)! generate calls to known code addresses.� Many functions are small! good candidates for inline expansion.

29

More opportunities for optimizations

� Lightweight closure conversion (Wand and Steckler, 1992):sometimes the full power of closures is not needed andsimpler representations can be used for functional values.Example: all functions that can be called at some point areclosed ! represent them by mere code pointers.A program analysis is needed to discover those opportunities forclosure optimization.

30

Control-
ow analysesControl-
ow analyses (Shivers, 1991) approximate at eachapplication point the set of functions that can be called here(in other terms, the set of function values that can
ow to thisapplication point).� If that set is a singleton ffun x -> eg, we can generate adirect call to the code for e, or inline it.� If all elements in that set are \simple" (e.g. closed),consider lightweight closures.� In all cases, we get an approximation of the call graph for theprogram (who calls who?), required for later interproceduraloptimizations (e.g. global register allocation). 31

A high-level view of CFASince functions are �rst-class values, CFA is actually a data-
owanalysis that keeps track of the
ow of functional values anddetermines control-
ow along the way.CFA sets up a system of constraints of the formV (`1) � V (`2)meaning that all values at program point `1 can
ow to point `2.Solve that system into a
ow graph:producer point �! consumer point(constant, (function parameter,fun x -> e, argument to cons,cons, +, : : :) argument to +, : : :) 32

Example of constraint generation rules

� For (if am then bn else cp)`:add the constraintsV (n) � V (`) (the then branch
ows to the result)V (p) � V (`) (the else branch
ows to the result)� For (am(bn))`:for each function fun x -> eq in V (m), add the constraintsV (n) � V (x) (the argument
ows to the parameter)V (q) � V (`) (the function result
ows to the application result)

Note: need to interlace constraint building and constraintsolving, and iterate till �xpoint is reached. 33

An example of CFA

let rec apply_list l arg =match l with[] -> []| hd :: tl -> hd(arg) :: apply_list tl arg

apply_list ((fun x -> x+1) :: (fun x -> x-1) :: []) 1
34

Summary on CFABasic algorithm (0-CFA) is O(n3) (n is the size of the program).Can be performed module per module with some loss ofprecision.Main applications:� Optimize function calls in functional languages.� Optimize method dispatch in object-oriented languages.� Eliminate run-time type tests in Scheme.� More applications later: : : 35

Variants of 0-CFAMore precise analyses:� Polyvariant analyses (n-CFA, polymorphic splitting, : : :):distinguish between di�erent call sites of the same function.� Finer approximation of values (Heintze's set-based analysis):capture the shapes of data structures using grammars.Less precise (faster) analyses:� Coarser representations of sets of values:; or fvg (singletons) or > (all values).� Do not iterate till �xpoint: (Ashley, 1997)start with > on all variables and do 1 or 2 iterations.� Use equality constraints (uni�cation) in addition to inclusionconstraints. 36

Connections between CFA and type systemsCFA can be used as a type system if enriched with safety checks(e.g. fail if an integer
ows to an application site).Conversely, many type systems (and type inference algorithms)can be viewed as checking / approximating the
ow of data in aprogram.Palsberg and O'Keefe (1995) show equivalence between:� 0-CFA with safety checks;� the Amadio-Cardelli type system (subtyping + recursivetypes).Provides an e�cient type inference algorithm for that system.37

More connections� Type inference algorithms for type systems with subtypingare based on inclusion constraints similar to those used byCFA. (Aiken and Wimmers, 1993; Smith et al, 1995.)� Rich type systems (with intersection and union types) havebeen used to represent the results of
ow analyses andexploit them for closure optimizations (Muller et al, 1997).
38

Part 3
Representing data

39

Representations for high-level data structuresHigh-level data structures (such as ML's datatypes) leaveconsiderable
exibility to the compiler in deciding a datarepresentation.! clever representation tricks are feasible.(Would be hard to do by hand in C.)Examples:� For dynamically-typed languages (Scheme):clever tagging scheme (to embed the type of an object in itsbit pattern).� For ML's datatypes: clever encodings of the constructor.
40

Example: representation of datatypes in Objective CamlConstant constructors are represented by odd integers 1, 3, : : :(Bit pattern: : : : xxx1)Constructors with arguments are represented by word-alignedpointers to heap blocks.(Bit pattern: : : : xx00)The heap block contains one byte (the \tag" byte) representingthe number of the constructor.This byte is stored at no extra cost in the header word requiredby the garbage collector.

41

type expr =Const of int (* pointer to block with tag 0 *)| Var (* integer 1 *)| Sum of expr * expr (* pointer to block with tag 1 *)| Prod of expr * expr (* pointer to block with tag 2 *)

Const(5)
5 0 Sum(e1, e2)
�� 1e1 e2

Prod(e1, e2)
�� 2e1 e2

42

Further optimizationsOn a 64-bit processor, encode the tag byte in the pointer itself:Constructor with argument tag pointer (56 bits)Constant constructor tag 0000 : : :Allows testing the tag without any memory access.type expr =Const of int (* pointer 00: : : *)| Var (* null pointer 010000: : : *)| Sum of expr * expr (* pointer 02: : : *)| Prod of expr * expr (* pointer 03: : : *)Hard to do by hand in C (backward compatibility with 32-bitplatforms). 43

Data representation and static typingWithout static typing (Scheme):� Need tagging to implement run-time type tests.� All data types must �t a common format (usually one word).!
oats are boxed (heap-allocated);! records are boxed;! arrays are arrays of pointers to boxed elements.� All functions must use the same calling conventions:argument in R0; result in R0.

44

With monomorphic static typing (Pascal, C):� No need to support run-time type tests.� Di�erent data types can have di�erent sizes.! unboxed
oats! unboxed records (if small enough)!
at arraysThe compiler determines the size from the static type:jintj = 1 word jfloatj= 2 words j� � �j = j� j+ j�j� Functions of di�erent types can use di�erent callingconventions. E.g. use
oating-point registers for
oatarguments and results.float! float argument in FP0, result in FP0int� int! int argument in R0 and R1, result in R045

Example: an array of pointsIn Scheme:
1.1 1.2 2.1 2.2

� � � �

� �

In C: 1.1 1.2 2.1 2.2

46

The problem with polymorphic typingThe type system guarantees type safety, but does not assign aunique type to every value at compile-time:Polymorphism:fun x -> x : 8�: �! �

Actual type of x: anySize of x: variableCalling conventions: variable
Type abstraction:type tval x : tval f : t -> tActual type of x: unknownSize of x: unknownCalling conventions: unknown

47

Simple solutions� Restrict polymorphism and type abstraction.Modula: abstract types must be pointer types.Java: cannot coerce integers and
oats to/from type Object.Problem: unnatural.� Code replication.Ada, C++: compile a specialized version of a generic functionfor each type it is used with.Problem: code size explosion; link-time code generation.� Revert to Scheme-style representations.Problem: ine�cient; lots of boxing and unboxing. 48

More interesting solutions� Use run-time type inspection:pass type information at run-time to polymorphic code;use this information to determine sizes and layouts atrun-time.� Mix C-style representations for monomorphic code andScheme-style representations for polymorphic code.� Combine Scheme-style representations with local unboxing,partial inlining, and special treatment of arrays.
49

The type-passing interpretation of polymorphismIn order to reconstruct exact types of data structures atrun-time, polymorphic function must receive as extra argumentsthe types to which they are specialized.let f x = x let f � x = xlet g x = f (x, x) let g � x = f h� � �i (x, x)g 5 g hinti 5In this example, this allows f to determine at run-time that its xparameter has actual type int� int.

50

Type-dependent data layoutThe TIL approach (Harper, Morrisett, et al, 1994):� Use C-style, \
at", multi-word representations of datastructures (just like in a monomorphic type system).� In polymorphic code, compute size information, data layout,and calling conventions from the run-time type information.� (In monomorphic code, this information is computed atcompile-time.)

51

ExampleSource code:let assign_array a b i = b.(i) <- a.(i)Generated code, Scheme style: Generated code, TILstyle:assign_array(a, b, i) f assign_array(�, a, b, i) fload one word from a + i * 4; s = size_of_type(�);store this word at b + i * 4; copy s bytesg from a + i * sto b + i * s;gVariant (Ohori, 1993): pass only the size of types at run-time,not representations of whole type expressions. 52

Mixed data representations(Leroy, 1992; Shao and Appel, 1995; the SML/NJ compiler)Use C-style representations for data whose exact type is knownat compile-time (i.e. inside monomorphic code).Revert to Scheme-style representations for manipulating datawhose type is not completely known at compile-time (i.e. insidepolymorphic code).Insert coercions between the two representations at interfacepoints.

53

�R0�R0 �R13.14159265FP0 �R13.14159265FP0 2.71828182R1

�
� �

float�

float� float

Static type Representation ��3.141592652.71828182
54

Source code:let make_pair x = (x, x) in ... make_pair 3.41519Coercion diagram: R0 R0, R1

FP4 FP2,FP3box
make pair

unbox unbox

Generated code:let make_pair x = (x, x) in ...let (fst, snd) = make_pair(box_float(3.14159)) in(unbox_float(fst), unbox_float(snd)) 55

De�ning the coercions

[�) int] = identity [int) �] = identity[�) float] = unbox float [float) �] = box float[�) � �
] = unbox pair [� �
) �] = box pair[(� � �)) (� 0 � �0)] = fun (x; y) -> ([�) � 0](x); [�) �0](y))[(� ! �)) (� 0 ! �0)] = fun f -> [�) �0] � f � [� 0) �]When using a value of type 8�:� with type � 0 = �f� �g, insertcoercion [�) � 0].

56

Untyped unboxing techniques(Objective Caml; Glasgow Haskell; Bigloo Scheme.)Instead of basing the data representations on the types, useScheme-style representations by default, plus:� Perform intra-function unboxing by standard data
owanalysis:let x = box(f) in let x = f in... unbox(x) ... unbox(x) x ... x ...� Extend it to inter-function unboxing using control-
owanalysis or partial inlining.� Use simple tagging schemes and tag testing to supportimportant special cases of generic data structures (e.g.
oatarrays). 57

Partial inlining (a.k.a. the worker-wrapper technique)(Peyton-Jones and Lauchbury, 1991; Goubault, 1994.)Split a function into:� a worker function taking and returning unboxed data;� a wrapper function performing the boxing and unboxingaround the worker.At call sites, try to inline the wrapper function (typically small)and hope its boxing and unboxing cancel out with those of thecontext.

58

Examplelet worker_f a b =(* a and b are unboxed
oats *)(* compute result *)(* return unboxed
oat result *)let f a b = box(worker_f (unbox a) (unbox b))... unbox(f (box 3.14) (box 2.71)) ...After inlining of f and simpli�cations:... worker_f 3.14 2.71 ...

59

Part 4

Code generation issues
60

RecapitulationThe front-end of a compiler for a functional language performs:� closure introduction and optimization;� compilation of pattern-matching into simple tests;� making explicit data representations, heap allocation, andpointer dereferencing.This done, we are back to a simple intermediate language(similar to a subset of C with support for garbage collection).! Generate assembly using conventional back-end technology.! Or use a virtual machine. 61

Virtual machinesThe code for a virtual machine is executed not by hardware, butby a a bytecode interpreter (usually written in C).! high-portability; platform-independence.Virtual machine instruction sets usually consist in:� Simple, generic stack-based instructions for arithmetic,branches, etc (mostly independent of the source language).� Complex instructions specialized to the source language:For functional languages: closure construction, closureapplication, allocation of data structures.For Java: method invocation, object allocation.Many known tricks to make bytecode interpreters e�cient(Piumarta, 1998). 62

Organization of a typical back-end

Intermediatelanguage Register transfer languagewith virtual registers

Register transfer languagewith real registersand stack framesActualassemblycode
order evaluationsinstruction selection

registerallocation

�nal codegeneration
optimizations

optimizations 63

Relevance of conventional compiler optimizationsWhen compiling to assembly code, keep in mind that functionalprograms have unusual characteristics compared with Fortran orC programs (e.g. the SPEC benchmarks):� Few
oating-point operations� Many memory accesses� Few proper loops (but tail-recursive functions are loops)� Small basic blocks� Frequent function calls� Lots of heap allocation and garbage collection.! Many classic compiler optimizations are not very e�ective.64

Most important optimizations

� Procedure optimizations (inlining, tail-call optimization, leafroutine optimization, lightweight calling conventions).� Register allocation.� Spill code optimization (early saves, lazy restores).� E�cient heap allocation sequences.� E�cient garbage collection interface.

65

Not so important optimizations

� Loop and array optimizations (e.g. strength reduction,induction variables).� Classic intraprocedural optimizations (constant propagation,constant folding, copy propagation, common subexpressionelimination).� Instruction scheduling(processors with out-of-order execution do it dynamicallyvery well, especially on small basic blocks).Note however some attempts at extending software pipelining torecursive functions (Pouzet, 1995). 66

Optimizations that have not been tried yet� Link-time optimizations based on whole program analysis:{ Interprocedural register allocation.{ Specialization of polymorphism and type abstraction.Linker technology lags behind.� Optimization w.r.t. the memory hierarchy.Very little is known, and what is known applies only to arraysbut not heap-allocated structures (tiling, loop interchange).
67

Interactions with the garbage collectorGarbage collectors walk the memory graph.For this, they need to know the memory roots: the pointers intothe heap contained in registers and in the stack.Conservative garbage collectors can work even if some of the\roots" given to them are not actually heap pointers (such asreturn addresses, untagged integers, unboxed
oats).! Use the whole stack + all the registers as roots.Exact garbage collectors (more e�cient) must be given rootsthat are guaranteed to be well-formed heap pointers.! We must know at GC-time which registers and which stackslots contain heap pointers. 68

Communicate type information to the garbage collectorIn the register transfer language, it is easy to annotate virtualregisters with machine-level types:heap pointer (or tagged integer)untagged integerunboxed
oatThis annotation is preserved during further passes (e.g. registerallocation).For each GC point (heap allocation, function call), generate aframe descriptor listing the actual locations of all virtualregisters with type \heap pointer".

69

Example

�456return addr 23.141592654�123�return addr 1Stack

At return address 1:pointers locatedin slots 0 and 2Size of frame: 5

At return address 2:pointer locatedin slot 1Size of frame: 2

Frame descriptors(generated by the back-end)

slot 0slot 1slot 2slot 3slot 4
slot 0slot 1

70

Passing type information through the back-endGenerating the descriptors is easy, but requires that theback-end preserves and updates the type annotations.Existing portable back-ends (e.g. C compilers, or VPO) don'tdo this.C-- (Peyton-Jones et al, 1998): towards a GC-friendlyintermediate language and portable back-end.
71

Conclusions� Compilation technology for functional languages is relativelymature.On comparable programs, achieve at least 50% of theperformance of optimizing C compilers (often more) (Hartelet al, 1996).� Still needs work to keep up with the evolution of processors.� Truly e�cient functional programs still require programmersto be conscious of performance issues.

72

