An introduction to

compiling functional languages

Xavier Leroy

INRIA Rocquencourt, projet Cristal

http://pauillac.inria.fr/“xleroy/

Prologue

What is a functional language?

Functions as first-class values

A functional language is a language where the notion of
function is taken seriously.

e Functions are first-class objects in the language:
just like any other language object, they can be
— passed as parameters to other functions:

— returned as function results;

— stored in data structures.

e Functions can be computed (in some sense).

Examples

Derivative of a floating-point function:

let deriv £ h =
(fun x > (f(x +. h) -. f(x -. h)) /. (2.0 *. h));;

let d_sin = deriv sin 1le-5;;

d_sin 0.0;;

Main uses of functions as first-class values

e Facilitates reuse of generic functions.
Example: the List.map list transformer:

List.map [[e1; ...; en] = [f(e1); ...; f(en)]
e Supports user-defined control structures (e.g. iterators).

e Allows mixing data and functions in data structures

Non-functional languages

o In C;
— code pointers are first-class values:

— but functions cannot depend on parameters to other

functions.

e In Pascal:
— nested functions are supported;

— but functions cannot be returned as a result, nor put in

data structures.

Declarative vs. imperative

Functional languages promote a more abstract (more
“mathematical’”’) view of programming than imperative
languages.

Example: the let construct names an intermediate result.
No need to declare a variable, then assign it with the result.

function f(x: real): real

begin
var cosx: real;
cosx := cos(x);
f := cosx *. cosx;

end

Declarative vs. imperative, 2

Data structures are allocated and initialized in one construct.
No need to allocate space for the structure, then fill in the fields.

typedef struct {double x, y;} *point;

point scale(point pt, double s) {
point res = malloc(sizeof (*xpt));
res—>x = pt->x * s;
res—>y = pt->y * s;

return res;

Also:

- pointers are implicit;

- automatic memory management (garbage collection);
- impossible to have partially initialized objects.

Purely functional or not?

e "“Pure” functional languages prohibit entirely assignment to
variables and in-place modification to data structures.

Example: Haskell.

Goes along with lazy evaluation (on-demand computation of
expressions).

e Other functional languages are equipped with full imperative
power as well.

Example: ML, Scheme.

Still, these languages encourage declarative programming.

Datatypes and pattern-matching

Most functional languages have high-level data structures and
pattern-matching to operate over these:

type expression = Const of int | Var
| Sum of expression * expression

| Prod of expression * expression

let expr = Prod(Sum(Var, Const 1), Var)

let rec deriv e =
match e with
Const n -> Const O
| Var -> Const 1
| Sum(el,e2) -> Sum(deriv el, deriv e2)

| Prod(el,e2) -> Sum(Prod(el, deriv e2), Prod(deriv el, e2))
10

Strong static typing with type inference (Hindley-Milner)

Most functional languages are statically strongly typed:

"xyz" © 123

The compiler infers types (no type declarations on functions):

let geom_mean a b = sqrt(a *. b)

Generic functions receive polymorphic types:
List.map: (’a -> ’b) -> ’a list -> ’b list for all types ’a,’b
List.map (fun x -> x+1) [1;2;3]

List.map string_of_int [1;2;3]

11

Summary

Compilers for functional languages need to deal with (or take
advantage of) the following features:

ML Haskell Scheme

Full functionality * * *
Declarative style * * *
Imperative style * *
LLazy evaluation *
High-level data structures * * *
Automatic memory management % *
Pattern-matching * *
Strong static typing * *
Polymorphism * * *

12

Outline

1. Compiling full functionality: closures

2. Optimizing full functionality: flow analyses
3. Data representation issues

4. Code generation issues

Not treated in this tutorial:

1. Lazy evaluation (see Peyton-Jones’ book).
2. Compilation of pattern matching (same).

3. Garbage collection techniques (see Paul Wilson’'s surveys).

13

Part 1

Compiling full functionality: closures

14

A naive approach

When evaluating fun x -> e, generate a block of code at
run-time and return a pointer to that code:

let scale n = fun x -> X * n

let £ = scale 10

res <- arg
mul res, 10

return

Problems:
- run-time code generation is expensive;
- for big functions, this allocates large blocks of code.

15

Towards a better solution

Notice that all the generated blocks of code share the same
“shape’” : they differ only in the values of the n variable at the

time of evaluation of scale n.

res <- arg
mul res, <the value of n passed to scale>

return res

Idea: share the common code and put the varying parts (i.e. the
value of n) in some external data structure.

16

Closures (P. J. Landin, 1964)

All functional values are represented by closures.

Closures are heap-allocated data structures containing:

e a pointer to a fixed piece of code computing the function
result;

e an environment. a record providing values for the free
variables of the function.

(The free variables of the function are all variables appearing in
the function that are neither parameters to the function, nor
let-bound inside the function.)

17

Example of closure

return value of scale 10

v

10
(heap-allocated block)

res <- argl
n <- argO.n
mul res, n

return

(fixed code block)

18

T he compilation scheme for functions and applications

[a(®)] =
let clos = [[a]] in clos.code clos [b]

[fun x -> e] =

let code_f clos x =

let v = clos.env_v and w = clos.env_w and ... in [e]
in
{ code = code_f; env_v = v; env_w = W; ... }
where v, w, ... are the variables free in fun x -> e.

Note: the function code_f above has no free variables and is
represented by a pointer to its (fixed) code.

19

Translating functions into an object-oriented language

Closures are a special case of classes and objects having only
one apply method.

For the scale example, we get:

class scale {
private int env_n;
int apply(int x) { return x * env_n; }

scale(int n) { env_n = n; }

}

Build the closure = instantiate the class (new scale(10)).

Apply the closure = call its apply method (s.apply(5)).

20

Closure representation strategies

e When compiling an application, nothing is known about the
closure being called (this can be the closure of any function
in the program).

— T he code pointer must be at a fixed, predictable position
in the closure block.

e [he environment part of a closure is not accessed during
application. The structure of the environment matters only
to the code that builds the closure and the code for the
function body.

— Considerable flexibility in choosing the layout for the
environment part.

21

One-block closure

code

v1

Two-block closures

(with environnent sharing)

code 1

|l inked closures

code 3

v1

Un

o

code 2
/ Ynt1

code 2

> v1 <
Un
/ ==

Yp+1

22

Choosing a closure representation

Time trade-off:

e One-block closures: slower to build; faster access to
variables.

e Linked closures: faster to build; slower access to variables.
Space trade-off:

e Minimal environments: (bind only the free variables)
fewer opportunities for sharing: avoid space leaks.

e Larger environments: (may bind more variables)
more opportunities for sharing; may cause severe space leaks.

Modern implementations use one-block closures with minimal

environments.
23

Recursive functions

Recursive functions need access to their own closure:

let rec f x = ... List.map £ 1

That's easy because the code for the function receives the

closure itself as extra argument:

let rec code_f clos x =
let £ = clos in
let v = clos.env_v in

. List.map £ 1 ... in

let f = {code = code_f; env_v = v}

Mutually recursive functions

Mutually recursive functions need access to the closures of all
functions in the mutual recursive definition:

let rec f x = ... List.map £ 11 ... List.map g 12 ...
. List.map £ 13 ...

and gy

e [he closure for £ contains a pointer to that of g and
conversely (cyclic closures).

e Share a closure between £ and g using infix pointers
(Appel, 1992).

25

Cyclic closures

closure for f

'

closure for g

'

code f -~ ¥ code g
o |)
vq w1
Un wk

Shared closure

code £

<«€—Closure for £

code g

<«—closure for g

vl

Un

w1

Wi

26

Part 2

Optimizing full functionality: flow analyses

27

The overhead of closure calling

The introduction of closures makes function applications more
expensive:

e one load (to recover the code pointer from the closure)
e one call to a computed address (to call the code pointer)

The latter is expensive on modern processors (pipeline stall).

Contrast with a non-functional language:
e one call to a known address (no pipeline problems);

e Or even no overhead at all if we inline expand the body of
the called function (if it is small enough).

28

Opportunities for optimizations

The overhead of closures can be avoided in many practical
situations:

e Many function applications always call the same function:

let rec £f x = ... f e

. Sort.list order 1 ... (no other call to Sort.list)

— generate calls to known code addresses.

e Many functions are small
— good candidates for inline expansion.

29

More opportunities for optimizations

e Lightweight closure conversion (Wand and Steckler, 1992):
sometimes the full power of closures is not needed and
simpler representations can be used for functional values.

Example: all functions that can be called at some point are
closed — represent them by mere code pointers.

A program analysis is needed to discover those opportunities for

closure optimization.

30

Control-flow analyses

Control-flow analyses (Shivers, 1991) approximate at each
application point the set of functions that can be called here
(in other terms, the set of function values that can flow to this
application point).

e If that set is a singleton {fun x -> e}, we can generate a
direct call to the code for e, or inline it.

e If all elements in that set are “simple” (e.g. closed),
consider lightweight closures.

e In all cases, we get an approximation of the call graph for the
program (who calls who?), required for later interprocedural
optimizations (e.g. global register allocation).

31

A high-level view of CFA

Since functions are first-class values, CFA is actually a data-flow
analysis that keeps track of the flow of functional values and
determines control-flow along the way.

CFA sets up a system of constraints of the form

V(£1) C V(L)
meaning that all values at program point £; can flow to point 4.

Solve that system into a flow graph:
producer point —

(constant,
fun x -> e,
cons, +, ...)

32

Example of constraint generation rules

e For (if a'™ then b" else c:p)ei
add the constraints

V(n) C V(£) (the then branch flows to the result)
V(p) € V(£) (the else branch flows to the result)

e For (a™(b™))*:
for each function fun x -> e9 in V(m), add the constraints

V(n) C V(x) (the argument flows to the parameter)
V(g) C V(£) (the function result flows to the application result)

Note: need to interlace constraint building and constraint

solving, and iterate till fixpoint is reached.
33

An example of CFA

let rec apply_list =

match 1 with
1 > [
| D -> hd(arg)

apply_list ((fun x -> x+1)

;. apply_list tl arg

(fun -> x-1)

(1) 1

34

Summary on CFA

Basic algorithm (0-CFA) is O(n3) (n is the size of the program).

Can be performed module per module with some loss of
precision.

Main applications:
e Optimize function calls in functional languages.
e Optimize method dispatch in object-oriented languages.
e Eliminate run-time type tests in Scheme.

e More applications later...

35

Variants of O-CFA

More precise analyses:

e Polyvariant analyses (n-CFA, polymorphic splitting, ...):
distinguish between different call sites of the same function.

e Finer approximation of values (Heintze's set-based analysis):
capture the shapes of data structures using grammars.

Less precise (faster) analyses:

e Coarser representations of sets of values:
O or {v} (singletons) or T (all values).

e Do not iterate till fixpoint: (Ashley, 1997)
start with T on all variables and do 1 or 2 iterations.

e Use equality constraints (unification) in addition to inclusion

constraints.

36

Connections between CFA and type systems

CFA can be used as a type system if enriched with safety checks
(e.g. fail if an integer flows to an application site).

Conversely, many type systems (and type inference algorithms)
can be viewed as checking / approximating the flow of data in a
program.

Palsberg and O'Keefe (1995) show equivalence between:
e O-CFA with safety checks:

e the Amadio-Cardelli type system (subtyping + recursive
types).

Provides an efficient type inference algorithm for that system.

37

More connections

e Type inference algorithms for type systems with subtyping
are based on inclusion constraints similar to those used by
CFA. (Aiken and Wimmers, 1993; Smith et al, 1995.)

e Rich type systems (with intersection and union types) have
been used to represent the results of flow analyses and
exploit them for closure optimizations (Muller et al, 1997).

38

Part 3

Representing data

39

Representations for high-level data structures

High-level data structures (such as ML's datatypes) leave
considerable flexibility to the compiler in deciding a data
representation.

— cClever representation tricks are feasible.

(Would be hard to do by hand in C.)

Examples:

e For dynamically-typed languages (Scheme):
clever tagging scheme (to embed the type of an object in its
bit pattern).

e For MVL’'s datatypes: clever encodings of the constructor.

40

Example: representation of datatypes in Objective Caml

Constant constructors are represented by odd integers 1, 3, ...
(Bit pattern: ...zzxl)

Constructors with arguments are represented by word-aligned
pointers to heap blocks.
(Bit pattern: ...zz00)

The heap block contains one byte (the “tag” byte) representing
the number of the constructor.

This byte is stored at no extra cost in the header word required

by the garbage collector.

41

type expr =

Const of int (*
| Var (*
| Sum of expr * expr (*

| Prod of expr * expr (*

Const (5)

O

pointer to block with tag O %)

integer 1 %)

pointer to block with tag 1 %)

pointer to block with tag 2 x)

Sum(eq, eo)

1

e] €—o

—» €9

Prod(eq1, €5)

2

e1

42

Further optimizations

On a 64-bit processor, encode the tag byte in the pointer itself:

Constructor with argument | tag | pointer (56 bits)

Constant constructor tag | 0000 ...

Allows testing the tag without any memory access.

type expr =
Const of int (x pointer 00... x*)
| Var (x null pointer 010000. .. *)

| Sum of expr * expr (% pointer 02... x*)
| Prod of expr * expr (* pointer 03... x*)

Hard to do by hand in C (backward compatibility with 32-bit
platforms).

43

Data representation and static typing

Without static typing (Scheme):
e Need tagging to implement run-time type tests.

e All data types must fit a common format (usually one word).
— floats are boxed (heap-allocated);
— records are boxed;
— arrays are arrays of pointers to boxed elements.

e All functions must use the same calling conventions:
argument in RO; result in RO.

44

With monomorphic static typing (Pascal, C):
e No need to support run-time type tests.

e Different data types can have different sizes.
— unboxed floats
— unboxed records (if small enough)
— flat arrays

The compiler determines the size from the static type:
|lint| = 1 word |float| = 2 words T X o| = |7| + |o]

e Functions of different types can use different calling
conventions. E.g. use floating-point registers for float
arguments and results.

float — float argument in FPO, result in FPO

int X int — int argument in RO and R1, result in RO

45

Example: an array of points

In Scheme:

In C:

1.1

1.2

46

The problem with polymorphic typing

The type system guarantees type safety, but does not assign a
unique type to every value at compile-time:

Polymorphism: Type abstraction:

fun x > x : Vo a— « type t
val x : t

val £ : t > t

Actual type of x: any Actual type of x: unknown
Size of x: variable Size of x: unknown
Calling conventions: variable Calling conventions: unknown

47

Simple solutions

e Restrict polymorphism and type abstraction.

Modula: abstract types must be pointer types.
Java: cannot coerce integers and floats to/from type Object.

Problem: unnatural.

e Code replication.

Ada, C++: compile a specialized version of a generic function
for each type it is used with.

Problem: code size explosion; link-time code generation.

e Revert to Scheme-style representations.
Problem: inefficient; lots of boxing and unboxing.

48

More interesting solutions

e Use run-time type inspection:
pass type information at run-time to polymorphic code;
use this information to determine sizes and layouts at
run-time.

e Mix C-style representations for monomorphic code and
Scheme-style representations for polymorphic code.

e Combine Scheme-style representations with local unboxing,
partial inlining, and special treatment of arrays.

49

The type-passing interpretation of polymorphism

In order to reconstruct exact types of data structures at
run-time, polymorphic function must receive as extra arguments

the types to which they are specialized.

let f o x = x
let g 0 x =f (Bx03) (x, x)

g (int) 5

In this example, this allows £ to determine at run-time that its x

parameter has actual type int X int.

50

Type-dependent data layout

The TIL approach (Harper, Morrisett, et al, 1994):

e Use C-style, “flat”, multi-word representations of data
structures (just like in @ monomorphic type system).

e In polymorphic code, compute size information, data layout,
and calling conventions from the run-time type information.

e (In monomorphic code, this information is computed at

compile-time.)

51

Example

Source code:
let assign_array a b i = b.(i) <- a. (i)

Generated code, Scheme style: Generated code, TIL

style:

assign_array(a, a, b, i) {
s = size_of_type(a);
copy s bytes
from a + 1 *x s

to b+ 1 *x s;

}

Variant (Ohori, 1993): pass only the size of types at run-time,

not representations of whole type expressions.
52

Mixed data representations

(Leroy, 1992; Shao and Appel, 1995; the SML/NJ compiler)

Use C-style representations for data whose exact type is known
at compile-time (i.e. inside monomorphic code).

Revert to Scheme-style representations for manipulating data
whose type is not completely known at compile-time (i.e. inside
polymorphic code).

Insert coercions between the two representations at interface
points.

53

Static type

B Xy

float X 7y

float X float

./

Re presentation/'
Ro//'

3.141

o -~

59265

RO R1

2.718

o

3.14159265

./

28182

FPO

R1

3.14159265

2.71828182

FPO

R1

54

Source code:
let make_pair x = (x, x) in ... make_pair 3.41519

Coercion diagram:
make _pair

RO » RO, R1
box unbox unbox
FP4 FP2,FP3
Generated code:
let make_pair x = (x, x) in ...

let (fst, snd) = make_pair(box_float(3.14159)) in
(unbox_float(fst), unbox_float(snd))

55

Defining the coercions

[= int] = identity [int = o] = identity
[= float] = unbox float [float = @] = box_float
[= B xv] = unbox pair [B X~y = a] = box_pair

fun (z,y) -> ([t = 7'1(z), [0 = o'](v))
fun f -> [0 = ¢']o fo[r = 7]

(T x o) = (7' x 6))]

(1 — o) = (7" — o)]

When using a value of type Va.r with type 7/ = 7{a « o}, insert
coercion [r = 7'].

56

Untyped unboxing techniques

(Objective Caml; Glasgow Haskell; Bigloo Scheme.)

Instead of basing the data representations on the types, use
Scheme-style representations by default, plus:

e Perform intra-function unboxing by standard dataflow

analysis:

let x = box(f) in let x = f in

. unbox(x) ... unbox(x) ... cee X ... X ...

e Extend it to inter-function unboxing using control-flow
analysis or partial inlining.

e Use simple tagging schemes and tag testing to support
important special cases of generic data structures (e.g. float
arrays).

57

Partial inlining (a.k.a. the worker-wrapper technique)

(Peyton-Jones and Lauchbury, 1991; Goubault, 1994.)

Split a function into:
e a worker function taking and returning unboxed data;

e a wrapper function performing the boxing and unboxing
around the worker.

At call sites, try to inline the wrapper function (typically small)
and hope its boxing and unboxing cancel out with those of the

context.

58

Example

let worker_f a b =
(* a and b are unboxed floats *)
(x compute result *)
(* return unboxed float result *)

let £ a b = box(worker_f (unbox a) (unbox b))

. unbox(f (box 3.14) (box 2.71))
After inlining of £ and simplifications:

. worker_f 3.14 2.71

59

Part 4

Code generation issues

60

Recapitulation

The front-end of a compiler for a functional language performs:
e closure introduction and optimization;
e compilation of pattern-matching into simple tests;

e Mmaking explicit data representations, heap allocation, and
pointer dereferencing.

This done, we are back to a simple intermediate language
(similar to a subset of C with support for garbage collection).

— Generate assembly using conventional back-end technology.

— Or use a virtual machine.

61

Virtual machines

The code for a virtual machine is executed not by hardware, but
by a a bytecode interpreter (usually written in C).
— high-portability; platform-independence.

Virtual machine instruction sets usually consist in:

e Simple, generic stack-based instructions for arithmetic,
branches, etc (mostly independent of the source language).

e Complex instructions specialized to the source language:
For functional languages: closure construction, closure
application, allocation of data structures.

For Java: method invocation, object allocation.

Many known tricks to make bytecode interpreters efficient
(Piumarta, 1998).

62

Organization of a typical back-end

Intermediate

order evaluations

optimizations

-

Register transfer language

> . . :
language instruction selection with virtual registers
register
allocation
\ 4
Actual Register transfer language
final code _ _
assembly = with real registers
generation
code and stack frames

J

optimizations

63

Relevance of conventional compiler optimizations

When compiling to assembly code, keep in mind that functional
programs have unusual characteristics compared with Fortran or
C programs (e.g. the SPEC benchmarks):

e Few floating-point operations

e Many memory accesses

e Few proper loops (but tail-recursive functions are loops)
e Small basic blocks

e Frequent function calls

e Lots of heap allocation and garbage collection.

— Many classic compiler optimizations are not very effective.
64

Most important optimizations

Procedure optimizations (inlining, tail-call optimization, leaf
routine optimization, lightweight calling conventions).

Register allocation.
Spill code optimization (early saves, lazy restores).
Efficient heap allocation sequences.

Efficient garbage collection interface.

65

Not so important optimizations

e Loop and array optimizations (e.g. strength reduction,

induction variables).

e Classic intraprocedural optimizations (constant propagation,
constant folding, copy propagation, common subexpression

elimination).

e Instruction scheduling
(processors with out-of-order execution do it dynamically

very well, especially on small basic blocks).

Note however some attempts at extending software pipelining to
recursive functions (Pouzet, 1995).

66

Optimizations that have not been tried yet

e Link-time optimizations based on whole program analysis:
— Interprocedural register allocation.

— Specialization of polymorphism and type abstraction.

Linker technology lags behind.

e Optimization w.r.t. the memory hierarchy.

Very little is known, and what is known applies only to arrays
but not heap-allocated structures (tiling, loop interchange).

67

Interactions with the garbage collector

Garbage collectors walk the memory graph.

For this, they need to know the memory roots: the pointers into
the heap contained in registers and in the stack.

Conservative garbage collectors can work even if some of the
“roots” given to them are not actually heap pointers (such as
return addresses, untagged integers, unboxed floats).

— Use the whole stack + all the registers as roots.

Exact garbage collectors (more efficient) must be given roots
that are guaranteed to be well-formed heap pointers.

— We must know at GC-time which registers and which stack
slots contain heap pointers.

68

Communicate type information to the garbage collector

In the register transfer language, it is easy to annotate virtual
registers with machine-level types:

heap pointer (or tagged integer)
untagged integer
unboxed float

This annotation is preserved during further passes (e.g. register
allocation).

For each GC point (heap allocation, function call), generate a
frame descriptor listing the actual locations of all virtual
registers with type “heap pointer’.

69

Example

® slot 1

456 slot O

return addr 2 b

3.1415 slot 4
92654 slot 3

® slot 2
123 slot 1
® slot O

return addr 1 b

Stack

Frame descriptors

(generated by the back-end)

At return address 2:
pointer located
in slot 1
Size of frame: 2

At return address 1:
pointers located
in slots 0 and 2
Size of frame: 5

70

Passing type information through the back-end

Generating the descriptors is easy, but requires that the
back-end preserves and updates the type annotations.

Existing portable back-ends (e.g. C compilers, or VPO) don’t
do this.

C-- (Peyton-Jones et al, 1998): towards a GC-friendly
intermediate language and portable back-end.

71

Conclusions

e Compilation technology for functional languages is relatively
mature.

On comparable programs, achieve at least 50% of the
performance of optimizing C compilers (often more) (Hartel
et al, 1996).

e Still needs work to keep up with the evolution of processors.

e Truly efficient functional programs still require programmers
to be conscious of performance issues.

72

