Compilation techniques

for functional and object-oriented languages
Xavier Leroy
INRIA Rocquencourt, projet Cristal

http://pauillac.inria.fr/“xleroy/

PLDI tutorial, june 1998

Techniques de compilation

pour les langages fonctionnels et a objets
Xavier Leroy
INRIA Rocquencourt, projet Cristal

http://pauillac.inria.fr/“xleroy/

Tutoriel PLDI, juin 1998

Outline

. Basic translations for high-level features.

Intermediate language and back-end requirement.
. Optimizing function applications and method dispatches.

. Optimizing memory accesses.

Part 1
Basic compilation techniques

and requirements from the back-end

Strict functional languages

Transformation of functions into closures.
LLayout of data types, heap allocation, pointer introduction.

For ML: transformation of pattern-matchings into sequences
of simple tests.

For Scheme: introduction of run-time type tests.

Function closures

scale n = \x. X * n

evaluates to

¢ int f(clos, x)
® >

value of n

{ return x * clos->n; }

(heap-allocated block) (fixed code block)

Closure application:

[fun(arg)] =

closure * clos = [[fun]]; clos->code(clos, [arg])

Lazy functional languages

Same transformations as for strict languages, plus:

e Representation of delayed computations by heap-allocated
data structures (thunks, graphs).

When the result is needed, test if already computed and if
not, perform the computation and overwrite the thunk with

the result.

e Strictness analysis to determine when result can safely be

computed immediately.

Object-oriented languages

LLayout of objects, heap allocation, pointer introduction.

Layout of method suites (‘“v-tables”) attached to objects
(based on inheritance and subtyping hierarchies).

Transformation of method invocations into
method lookups + calls.

Introduction of run-time type tests if nheeded.

Objects and method suites

class C {
int n;
void incr() { n++; }

void decr() { n--; }

+
object method suite void C::incr(self)
® g self->n++;
incr /{ }
value of n

decr
\ void C: :decr(self)

{ self->n--; }

Method invocation:

[obj.meth(arg)] =
object * o = [Jobj]]; lookup(o->vtable, meth) (o, [arg])

The intermediate language

The target of the previous translations is a simple conventional
language:

e Integer and floating-point operations.

e L.oads and stores of words, bytes, single and double floats.
e C-style function calls (including function pointers).

e Classic control structures (if then else, lOOps, ...).

Actually: a subset of C.
Why not generate C source and use a C compiler as a back-end?

Or use a generic back-end (VPO, compiler infrastructure, ...)?

Why C is not an adequate target language

Crucial features missing from C and generic back-ends:

e Support for tail calls.
(Caller deallocates its stack frame before jumping to callee.)

e Support exact (non-conservative) garbage collection.
Convenient features missing:

e Better arithmetic (overflow detection, multi-word
arithmetic).

e Low-level idioms (using traps for array bounds checking).

10

The problem with exact garbage collection

Exact garbage collectors need to distinguish pointers from

immediate data in the registers, stack, and heap blocks.

(E.g. in order to relocate the pointers after moving heap
blocks.)

Stack

456

Hello, world!

/'

3.141
52654

o—

789

Registers

123 o—1—»

11

Distinguishing pointers from immediate data

e In heap blocks: attach tags to data and to heap blocks.

immediate value heap block
® P secondary tag
data primary tag data

This can be done entirely by the front-end.

e In stack frames and in registers:

— Have separate stacks and register files for pointers and
non-pointers.
— Or, generate frame descriptors telling the GC where the

pointers are.

This requires cooperation from the register allocator.

12

Example of frame descriptors

456

return addr 2

3.1415
92654

123

return addr 1

Stack

(generated by the back-end)

Frame descriptors

At return address 2:
pointer located
in slot 1
Size of frame: 2

At return address 1:
pointers located
in slots 0 and 2
Size of frame: 5

13

Summary

e [he high-level features of functional and OO languages are

not hard to translate into a simple C-like intermediate
language.

e [he back-end technology required is mostly standard. ..

e ...except for:

— tail calls;

— transmission of type annotations from the front-end to
the run-time system.

e It would be great if portable back-ends supported these.

14

Part 2
Optimizing function applications

and method dispatch

15

The problem: computed branches

Examination of the code produced by naive functional or OO
compilers reveal a high number of computed branches (calls and
jumps to code addresses computed dynamically).

The naive compilation schemes produce one computed branch
per function application or method invocation.

[fun(arg)] =

closure * clos = [[fun]]; clos->code(clos, [arg]])

[obj.meth(arg)] =
object * o = [Jobj]]; lookup(o->vtable, meth) (o, [arg])

16

The cost of computed branches

On today’s processors, computed branches stall the
instruction pipeline for several (5 to 10) cycles.

(Most processors perform dynamic prediction for conditional
branches and function returns, but not for computed calls.)

We do a lot of those.

(Steenkiste and Hennesy: one function call or return every
11 instructions.)

Since the target of the call is not known at compile-time,
inlining of small functions and methods is not possible.

For the same reason, most interprocedural analyses do not
apply.

17

Example: invocation of a constant function or method

Type of invocation Time Instructions performed

Function inlined at O cycles | load immediate

point of call

Direct call to known 4 cycles | load immediate (argument), call

function to known address, load
immediate (result), return

Generic call through 11 cycles | load immediate, load code

£ ti | pointer, call to computed

unction closure address, load immediate, return

Generic method 18 cycles | lookup in two-level array (3

invocation

loads, 2 ALU), call to computed
address, load immediate, return

(Measured on a PowerPC 603e with the Objective Caml 1.07 compiler.)

18

Control-flow analyses

Control-flow analyses (Shivers, 1991) approximate at each
application point the set of functions that can be called here
(in other terms, the set of function values that can flow to this
application point).

e If that set is a singleton {\x -> e}, we can generate a direct
call to the code for e, or inline it.

e If all elements in that set are “simple” (e.g. closed),
consider lightweight closures.

e In all cases, we get an approximation of the call graph for
the program, required for later interprocedural optimizations.

19

Control-flow analyses in object-oriented terms

Similar analyses have been developed in the OO world (concrete
type inference, interprocedural class analysis, ...).

The goal is to approximate at each method invocation point the
set of classes to which the object may belong.

e If that set is a singleton {c}, we can generate a direct call to
c.m, or inline it.

e Same if all elements in that set have the same
implementation of method m (e.g. because they inherit it
from the same superclass).

e Also gives an approximation of the call graph.

20

A high-level view of CFA

Since functions and objects are first-class values, CFA is actually
a data-flow analysis that keeps track of the flow of functions
and objects, and determines control-flow along the way.

CFA sets up a system of constraints of the form

V(£1) CV(£y)

meaning that all values at program point £; can flow to point 4.

Solve that system into a flow graph:
producer point —— consumer point

(constant, (function parameter,
\x -> e, new C, argument to cons,
cons, +, ...) argument to +, ...)

21

Example of constraint generation rules

e For (if a'™ then b" else cp)ei
add the constraints

V(n) C V(£) (the then branch flows to the result)
V(p) € V(£) (the else branch flows to the result)

e For (a™(b™))*:
for each function \x -> e? in V(m), add the constraints

V(n) C V(x) (the argument flows to the parameter)
V(g) C V(¥4) (the function result flows to the application result)

Note: need to interlace constraint building and constraint

solving, and iterate till fixpoint is reached.
22

An example of CFA

apply_I|1i st =
case | of
[] ->[]

| ; -> hd(arg) : apply _list tl arg

apply list ((\x ->x+1) : (\x ->x-1) : []) O

23

apply_I|1i st =
case | of

[1 -> 1]
| ; -> hd(arg) : apply _list tl arg

apply list ((\x ->x+1) : (\x ->x-1) : []) O

23-a

apply_I|1i st =
case | of

[1 -> 1]
| ; -> hd(arg) : apply _list tl arg

apply list ((\x ->x+1) : (\x ->x-1) : []) O

23-b

/

apply list | arg =
case | of

[1 -> 1]
| hd : tl -> hd(arg) : apply list tl arg

apply list ((\x ->x+1) : (\x ->x-1) : []) O

23-C

/

apply list | arg =
case | of

[1 -> 1]
| hd : tl -> hd(arg) : apply list tl arg

apply list ((\x ->x+1) : (\x ->x-1) : []) O

23-d

Summary on CFA

Basic algorithm (0-CFA) is O(n3) (n is the size of the program).

This is a whole program analysis, but it can also be performed
module per module with some loss of precision.

Main applications:
e Optimize function calls in functional languages.
e Optimize method dispatch in object-oriented languages.

e Eliminate unnecessary run-time type tests in
dynamically-typed languages.

e Eliminate redundant boxing of function arguments and
results in polymorphic languages.

24

More precise analyses

e Polyvariant analyses (n-CFA, polymorphic splitting, ...):
distinguish between different call sites of the same function.

fx=x+1 monovariant: x is 0 or 1
gy=...f0 ... polyvariant: x is 0 when f called from g
hz=...f1... x iIs 1 when f called from h

e Finer approximation of values (Heintze's set-based analysis):
capture the shapes of data structures using grammars.

25

Less precise but faster analyses

Coarser representations of sets of values:
O or {v} (singletons) or T (all values).

Do not iterate till fixpoint:
start with T on all variables and do 1 or 2 iterations.

Use equality constraints (unification) in addition to inclusion
constraints.

Exploit type information (class hierarchy analysis, rapid type
analysis).

C obj; ... obj.mQ)

Can only call methods m from C and its subclasses.

26

Part 3

Optimizing memory accesses

27

The Knuth-Bendix benchmark (in Objective Caml)

~

/

Machine Dec 3000/300X Dec 3000/500
Processor 21064, 175 MHz 21064, 150 MHz
Running time 4.85 s 3.00 s
Cycles per instruction 3.9 CPI 2.1 CPI
: dual : single : icache : branch :resource: dcache :
;\ issue i issue), miss J stall ,j conflict | miss),

/
/

S o ~, -

W
O
O
X

)

500 [1

Primary cache miss: 17 cycles 9 cycles

e
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Secondary cache miss: 85 cycles 35 cycles

28

Symbolic processing

Most functional programs and many OO programs perform
symbolic processing as opposed to numerical computations.

Main characteristics of symbolic processing:

e Mostly loading data somewhere and storing it elsewhere.
Few integer and floating-point computations.

e A l|lot of pointer chasing; irregular patterns of memory

accesses: poor locality.

e High rate of heap allocation; frequent garbage collections.

29

Symbolic processing is memory-limited

For symbolic processing:

e EXxecution speed depends crucially on the memory
subsystem. Other architectural features such as multiple
ALUs have low impact on performances.

e Compiler optimizations that do not optimize loads and
stores have little impact on overall performance.

e Shall we just wait for hardware designers to come up with
better memory subsystems?

(They do. Example: on a Pentium Pro 200 MHz,
Knuth-Bendix runs at 1.1 CPI.)

30

Optimizing memory accesses

e Optimizing control-related memory accesses:

— Allocation of activation records.

— Register spilling around function calls.

e Optimizing data-related memory accesses:

— Unboxing data representations.

— Aggressive scheduling of memory accesses.

e Cache behavior of (generational) heap allocation.

31

Register spilling around function calls

In functional and OO languages, the main source of spilling is
function calls, not excessive register pressure.

e Avoid spills and restores in paths that do not call functions
(1/3 procedure activations contain no function calls;
2/3 procedure activations perform no function calls).

e Spill only when a function call is inevitable.
e Reload only when a use of the variable is inevitable.

e Strict callee-save and strict caller-save are suboptimal.

i if i >
compute r / use r

|
spill » call call reload r

32

Allocation of activation records

Frequent function calls — many allocations of activation records.

e Stack-allocated activation records:
common wisdom:; good cache behavior.

e Heap-allocated activation records:

— Many nice applications: first-class continuations,
lightweight threads, ...

— Heap allocation can be almost as fast as stack allocation.
— Heavy load on garbage collector.

— Cache behavior is the main problem.

33

Cache behavior of linear heap allocation

Reads to recently-allocated objects have good spatial
locality and low miss rate.

Writes to newly-allocated objects have ~ 100% miss rate.

Write misses can be absorbed by several architectural
features (large write buffers, sub-block placement, ...).

For better write behavior, can prefetch (or better
preallocate) next block cache in young generation.

(Objective Caml 1.07, PowerPC 603e, dcbz on next cache
line at each allocation — 5—8% speedup.)

34

linear allocation
_>

collector

youndg generation

old generation

34-a

Unboxing data representations

Boxing consists in heap-allocating a piece of data and handling

it through a pointer.

Example: an array of 2-D points (pairs of floats).

Flat, C-style

1.

1]1.2

2.1

@

LN

1.

111.2

Fully boxed, Scheme-style

1

/.
¥
1

P

'Y

.\
M
1?

2

.\
X
2?

2

Boxed representations are expensive (heap allocation, extra

loads) but facilitate the handling of important language features
such as polymorphism.

35

Unboxing and polymorphism

Boxed data representations support polymorphism (the ability for
a piece of code to operate uniformly on data of different types).

e In Java, all class instances can be viewed with type Object
— all objects must be represented by pointers
— NO unboxed tuples or records
— arrays of records are pointer arrays, not flat arrays.

e In Scheme, ML, Haskell, any language value can be passed
to a polymorphic function or put in a list.
— all data representations fit in one word
— tuples, records, double-precision floats are boxed
— no flat arrays either

36

Several approaches have been proposed to make monomorphic
code more efficient, at the expense of slowing down polymorphic
code:

e Use unboxed representations inside data structures (flat
arrays, flat records, ...)
In monomorphic code, rely on static types to compute
offsets at accesses.
In polymorphic code, rely on run-time type tests instead.

e Use unboxed representations in monomorphic functions,
relying on static type information for size and layout
determination.

When entering polymorphic code, coerce data to fully boxed
form, and unbox it back on return.

37

Adggressive scheduling of memory accesses

Exploit semantic guarantees of the language to schedule loads
and stores aggressively:

e Pointers to heap objects of incompatible types cannot alias.

e Pointers to newly allocated objects do not alias with any
other pointer.

e In ML and Haskell, most data structures are immutable:
once initialized, they cannot be modified. Loads from
immutable data structures cannot interfere with other
memory accesses.

e In ML and Haskell, pointers to many data types (tuples,
records, arrays) are never NULL and always point to valid
memory space. Loads from pointers to such objects can be
lifted above conditional branches safely.

38

Limitations to instruction scheduling

Instruction scheduling is limited by the following factors:
e Function bodies are relatively small (even after inlining).
e Many conditional branches; small basic blocks.

e Few loops (although tail-recursive functions are loops),
hence software pipelining does not apply often.

(But see Pouzet for an attempt to generalize software
pipelining to arbitrary recursive functions.)

It is still unclear whether loads can be scheduled early enough to
e.g. absorb the latency of a L1 cache miss.

39

Conclusions

Compilation technology for functional and OO languages has
progressed tremendously in the last 15 vears.

(Several compilers stay within a factor of 2 of optimizing
C/C++ compilers on comparable programs.)

Those high-level languages do raise new, challenging
compilation problems (flow analysis, representation analysis).

They also simplify some traditionally hard problems (aliasing,
load speculation).

Strong type systems and other semantic guarantees are the
compiler writer's friends, not enemies.

40

