
Compilation techniquesfor functional and object-oriented languages

Xavier LeroyINRIA Rocquencourt, projet Cristalhttp://pauillac.inria.fr/~xleroy/PLDI tutorial, june 1998

1

Techniques de compilationpour les langages fonctionnels et �a objets

Xavier LeroyINRIA Rocquencourt, projet Cristalhttp://pauillac.inria.fr/~xleroy/Tutoriel PLDI, juin 1998

1-a

Outline1. Basic translations for high-level features.Intermediate language and back-end requirement.2. Optimizing function applications and method dispatches.3. Optimizing memory accesses.

2

Part 1Basic compilation techniquesand requirements from the back-end
3

Strict functional languages

� Transformation of functions into closures.� Layout of data types, heap allocation, pointer introduction.� For ML: transformation of pattern-matchings into sequencesof simple tests.� For Scheme: introduction of run-time type tests.
4

Function closuresscale n = \x. x * n| {z }
�value of n int f(clos, x)f return x * clos->n; g

evaluates to
(heap-allocated block) (�xed code block)Closure application:[[fun(arg)]] =closure * clos = [[fun]]; clos->code(clos, [[arg]])

5

Lazy functional languagesSame transformations as for strict languages, plus:� Representation of delayed computations by heap-allocateddata structures (thunks, graphs).When the result is needed, test if already computed and ifnot, perform the computation and overwrite the thunk withthe result.� Strictness analysis to determine when result can safely becomputed immediately.

6

Object-oriented languages

� Layout of objects, heap allocation, pointer introduction.� Layout of method suites (\v-tables") attached to objects(based on inheritance and subtyping hierarchies).� Transformation of method invocations intomethod lookups + calls.� Introduction of run-time type tests if needed.
7

Objects and method suitesclass C {int n;void incr() { n++; }void decr() { n--; }}
�value of n void C::incr(self)f self->n++; g

void C::decr(self)f self->n--; g

object method suiteincrdecr

Method invocation:[[obj.meth(arg)]] =object * o = [[obj]]; lookup(o->vtable, meth)(o, [[arg]]) 8

The intermediate languageThe target of the previous translations is a simple conventionallanguage:� Integer and
oating-point operations.� Loads and stores of words, bytes, single and double
oats.� C-style function calls (including function pointers).� Classic control structures (if then else, loops, : : :).Actually: a subset of C.Why not generate C source and use a C compiler as a back-end?Or use a generic back-end (VPO, compiler infrastructure, : : :)?9

Why C is not an adequate target languageCrucial features missing from C and generic back-ends:� Support for tail calls.(Caller deallocates its stack frame before jumping to callee.)� Support exact (non-conservative) garbage collection.Convenient features missing:� Better arithmetic (over
ow detection, multi-wordarithmetic).� Low-level idioms (using traps for array bounds checking).
10

The problem with exact garbage collectionExact garbage collectors need to distinguish pointers fromimmediate data in the registers, stack, and heap blocks.(E.g. in order to relocate the pointers after moving heapblocks.)
456�3.14152654

Stack
�789Registers

� � Hello, world!
123 �

11

Distinguishing pointers from immediate data� In heap blocks: attach tags to data and to heap blocks.

�data primary tag

immediate value secondary tagdata
heap block

This can be done entirely by the front-end.� In stack frames and in registers:{ Have separate stacks and register �les for pointers andnon-pointers.{ Or, generate frame descriptors telling the GC where thepointers are.This requires cooperation from the register allocator. 12

Example of frame descriptors

�456return addr 23.141592654�123�return addr 1Stack

At return address 1:pointers locatedin slots 0 and 2Size of frame: 5

At return address 2:pointer locatedin slot 1Size of frame: 2

Frame descriptors(generated by the back-end)

slot 0slot 1slot 2slot 3slot 4
slot 0slot 1

13

Summary

� The high-level features of functional and OO languages arenot hard to translate into a simple C-like intermediatelanguage.� The back-end technology required is mostly standard: : :� : : : except for:{ tail calls;{ transmission of type annotations from the front-end tothe run-time system.� It would be great if portable back-ends supported these.14

Part 2Optimizing function applicationsand method dispatch
15

The problem: computed branchesExamination of the code produced by naive functional or OOcompilers reveal a high number of computed branches (calls andjumps to code addresses computed dynamically).The naive compilation schemes produce one computed branchper function application or method invocation.[[fun(arg)]] =closure * clos = [[fun]]; clos->code(clos, [[arg]])[[obj.meth(arg)]] =object * o = [[obj]]; lookup(o->vtable, meth)(o, [[arg]])
16

The cost of computed branches� On today's processors, computed branches stall theinstruction pipeline for several (5 to 10) cycles.(Most processors perform dynamic prediction for conditionalbranches and function returns, but not for computed calls.)� We do a lot of those.(Steenkiste and Hennesy: one function call or return every11 instructions.)� Since the target of the call is not known at compile-time,inlining of small functions and methods is not possible.� For the same reason, most interprocedural analyses do notapply. 17

Example: invocation of a constant function or method

Type of invocation Time Instructions performedFunction inlined atpoint of call 0 cycles load immediate

Direct call to knownfunction 4 cycles load immediate (argument), callto known address, loadimmediate (result), returnGeneric call throughfunction closure 11 cycles load immediate, load codepointer, call to computedaddress, load immediate, returnGeneric methodinvocation 18 cycles lookup in two-level array (3loads, 2 ALU), call to computedaddress, load immediate, return(Measured on a PowerPC 603e with the Objective Caml 1.07 compiler.)18

Control-
ow analysesControl-
ow analyses (Shivers, 1991) approximate at eachapplication point the set of functions that can be called here(in other terms, the set of function values that can
ow to thisapplication point).� If that set is a singleton f\x -> eg, we can generate a directcall to the code for e, or inline it.� If all elements in that set are \simple" (e.g. closed),consider lightweight closures.� In all cases, we get an approximation of the call graph forthe program, required for later interprocedural optimizations.19

Control-
ow analyses in object-oriented termsSimilar analyses have been developed in the OO world (concretetype inference, interprocedural class analysis, : : :).The goal is to approximate at each method invocation point theset of classes to which the object may belong.� If that set is a singleton fcg, we can generate a direct call toc:m, or inline it.� Same if all elements in that set have the sameimplementation of method m (e.g. because they inherit itfrom the same superclass).� Also gives an approximation of the call graph. 20

A high-level view of CFASince functions and objects are �rst-class values, CFA is actuallya data-
ow analysis that keeps track of the
ow of functionsand objects, and determines control-
ow along the way.CFA sets up a system of constraints of the formV (`1) � V (`2)meaning that all values at program point `1 can
ow to point `2.Solve that system into a
ow graph:producer point �! consumer point(constant, (function parameter,\x -> e, new C, argument to cons,cons, +, : : :) argument to +, : : :) 21

Example of constraint generation rules

� For (if am then bn else cp)`:add the constraintsV (n) � V (`) (the then branch
ows to the result)V (p) � V (`) (the else branch
ows to the result)� For (am(bn))`:for each function \x -> eq in V (m), add the constraintsV (n) � V (x) (the argument
ows to the parameter)V (q) � V (`) (the function result
ows to the application result)

Note: need to interlace constraint building and constraintsolving, and iterate till �xpoint is reached. 22

An example of CFA
apply_list l arg =

 case l of

 [] -> []

 | hd : tl -> hd(arg) : apply_list tl arg

apply_list ((\x -> x+1) : (\x -> x-1) : []) 0

23

apply_list l arg =

 case l of

 [] -> []

 | hd : tl -> hd(arg) : apply_list tl arg

apply_list ((\x -> x+1) : (\x -> x-1) : []) 0

23-a

apply_list l arg =

 case l of

 [] -> []

 | hd : tl -> hd(arg) : apply_list tl arg

apply_list ((\x -> x+1) : (\x -> x-1) : []) 0

23-b

apply_list l arg =

 case l of

 [] -> []

 | hd : tl -> hd(arg) : apply_list tl arg

apply_list ((\x -> x+1) : (\x -> x-1) : []) 0

23-c

apply_list l arg =

 case l of

 [] -> []

 | hd : tl -> hd(arg) : apply_list tl arg

apply_list ((\x -> x+1) : (\x -> x-1) : []) 0

23-d

Summary on CFABasic algorithm (0-CFA) is O(n3) (n is the size of the program).This is a whole program analysis, but it can also be performedmodule per module with some loss of precision.Main applications:� Optimize function calls in functional languages.� Optimize method dispatch in object-oriented languages.� Eliminate unnecessary run-time type tests indynamically-typed languages.� Eliminate redundant boxing of function arguments andresults in polymorphic languages. 24

More precise analyses

� Polyvariant analyses (n-CFA, polymorphic splitting, : : :):distinguish between di�erent call sites of the same function.f x = x + 1 monovariant: x is 0 or 1g y = ... f 0 ... polyvariant: x is 0 when f called from gh z = ... f 1 ... x is 1 when f called from h� Finer approximation of values (Heintze's set-based analysis):capture the shapes of data structures using grammars.
25

Less precise but faster analyses

� Coarser representations of sets of values:; or fvg (singletons) or > (all values).� Do not iterate till �xpoint:start with > on all variables and do 1 or 2 iterations.� Use equality constraints (uni�cation) in addition to inclusionconstraints.� Exploit type information (class hierarchy analysis, rapid typeanalysis).C obj; ... obj.m() ...Can only call methods m from C and its subclasses. 26

Part 3Optimizing memory accesses
27

The Knuth-Bendix benchmark (in Objective Caml)

Machine Dec 3000/300X Dec 3000/500Processor 21064, 175 MHz 21064, 150 MHzRunning time 4.85 s 3.00 sCycles per instruction 3.9 CPI 2.1 CPI

300X500
dualissue singleissue icachemiss branchstall resourcecon
ict dcachemiss

Primary cache miss: 17 cycles 9 cyclesSecondary cache miss: 85 cycles 35 cycles 28

Symbolic processingMost functional programs and many OO programs performsymbolic processing as opposed to numerical computations.Main characteristics of symbolic processing:� Mostly loading data somewhere and storing it elsewhere.Few integer and
oating-point computations.� A lot of pointer chasing; irregular patterns of memoryaccesses; poor locality.� High rate of heap allocation; frequent garbage collections.
29

Symbolic processing is memory-limitedFor symbolic processing:� Execution speed depends crucially on the memorysubsystem. Other architectural features such as multipleALUs have low impact on performances.� Compiler optimizations that do not optimize loads andstores have little impact on overall performance.� Shall we just wait for hardware designers to come up withbetter memory subsystems?(They do. Example: on a Pentium Pro 200 MHz,Knuth-Bendix runs at 1.1 CPI.) 30

Optimizing memory accesses

� Optimizing control-related memory accesses:{ Allocation of activation records.{ Register spilling around function calls.� Optimizing data-related memory accesses:{ Unboxing data representations.{ Aggressive scheduling of memory accesses.� Cache behavior of (generational) heap allocation.
31

Register spilling around function callsIn functional and OO languages, the main source of spilling isfunction calls, not excessive register pressure.� Avoid spills and restores in paths that do not call functions(1/3 procedure activations contain no function calls;2/3 procedure activations perform no function calls).� Spill only when a function call is inevitable.� Reload only when a use of the variable is inevitable.� Strict callee-save and strict caller-save are suboptimal.

ifcompute r spill r call call reload r use r
32

Allocation of activation recordsFrequent function calls ! many allocations of activation records.� Stack-allocated activation records:common wisdom; good cache behavior.� Heap-allocated activation records:{ Many nice applications: �rst-class continuations,lightweight threads, : : :{ Heap allocation can be almost as fast as stack allocation.{ Heavy load on garbage collector.{ Cache behavior is the main problem.

33

Cache behavior of linear heap allocation

� Reads to recently-allocated objects have good spatiallocality and low miss rate.� Writes to newly-allocated objects have � 100% miss rate.� Write misses can be absorbed by several architecturalfeatures (large write bu�ers, sub-block placement, : : :).� For better write behavior, can prefetch (or betterpreallocate) next block cache in young generation.(Objective Caml 1.07, PowerPC 603e, dcbz on next cacheline at each allocation ! 5{8% speedup.)

34

linear allocation
young generation old generationminorcollector

34-a

Unboxing data representationsBoxing consists in heap-allocating a piece of data and handlingit through a pointer.Example: an array of 2-D points (pairs of
oats).

1.1 1.2 2.1 2.2� � � �� �Fully boxed, Scheme-style1.1 1.2 2.1 2.2Flat, C-style
1.1 1.2 2.1 2.2� �Semi-boxed, Java-style

Boxed representations are expensive (heap allocation, extraloads) but facilitate the handling of important language featuressuch as polymorphism. 35

Unboxing and polymorphismBoxed data representations support polymorphism (the ability fora piece of code to operate uniformly on data of di�erent types).� In Java, all class instances can be viewed with type Object! all objects must be represented by pointers! no unboxed tuples or records! arrays of records are pointer arrays, not
at arrays.� In Scheme, ML, Haskell, any language value can be passedto a polymorphic function or put in a list.! all data representations �t in one word! tuples, records, double-precision
oats are boxed! no
at arrays either 36

Several approaches have been proposed to make monomorphiccode more e�cient, at the expense of slowing down polymorphiccode:� Use unboxed representations inside data structures (
atarrays,
at records, : : :)In monomorphic code, rely on static types to computeo�sets at accesses.In polymorphic code, rely on run-time type tests instead.� Use unboxed representations in monomorphic functions,relying on static type information for size and layoutdetermination.When entering polymorphic code, coerce data to fully boxedform, and unbox it back on return. 37

Aggressive scheduling of memory accessesExploit semantic guarantees of the language to schedule loadsand stores aggressively:� Pointers to heap objects of incompatible types cannot alias.� Pointers to newly allocated objects do not alias with anyother pointer.� In ML and Haskell, most data structures are immutable:once initialized, they cannot be modi�ed. Loads fromimmutable data structures cannot interfere with othermemory accesses.� In ML and Haskell, pointers to many data types (tuples,records, arrays) are never NULL and always point to validmemory space. Loads from pointers to such objects can belifted above conditional branches safely. 38

Limitations to instruction schedulingInstruction scheduling is limited by the following factors:� Function bodies are relatively small (even after inlining).� Many conditional branches; small basic blocks.� Few loops (although tail-recursive functions are loops),hence software pipelining does not apply often.(But see Pouzet for an attempt to generalize softwarepipelining to arbitrary recursive functions.)It is still unclear whether loads can be scheduled early enough toe.g. absorb the latency of a L1 cache miss. 39

ConclusionsCompilation technology for functional and OO languages hasprogressed tremendously in the last 15 years.(Several compilers stay within a factor of 2 of optimizingC/C++ compilers on comparable programs.)Those high-level languages do raise new, challengingcompilation problems (
ow analysis, representation analysis).They also simplify some traditionally hard problems (aliasing,load speculation).Strong type systems and other semantic guarantees are thecompiler writer's friends, not enemies. 40

