
Advanced Compilers M. Lam

Lecture 7

Instruction Scheduling

I Basic Block Scheduling

II Global Scheduling (for Non-Numeric Code)

Reading: Chapter 10.3 - 10.4

Advanced Compilers 2 L7: Instruction Scheduling

I. Scheduling Constraints

• Data dependences

• The operations must generate the same results as the correspond-
ing ones in the original program.

• Control dependences

• All the operations executed in the original program
must be executed in the optimized program

• Resource constraints

• No over-subscription of resources.

Advanced Compilers 3 L7: Instruction Scheduling

Data Dependence

• Must maintain order of accesses to potentially sam e locations

• True dependence: write -> read (RAW hazard)
a = ...
 = a

• Output dependence: write -> write (WAW hazard)
a = ...
a = ...

• Anti-dependence: read -> write (WAR hazard)
 = a
a =

• Data Dependence Graph

• Nodes: operations

• Edges: n1 -> n2 if n2 is data dependent on n1
labeled by the execution length of n1

Advanced Compilers 4 L7: Instruction Scheduling

Analysis on Memory Variables

• Undecidable in general

read x
read y
A[x] = ...
... = A[y]

• Two memory accesses can potentially be the same un less proven
otherwise

• Classes of analysis

• simple: base+offset1 = base+offset2?

• “data dependence analysis”:
Array accesses whose indices are affine expressions of
loop indices

A[2i] = A[2i+1]?

• interprocedural analysis: global = parameter?

• pointer analysis: pointer1 = pointer2?

• Data dependence analysis is useful for many other purposes

Advanced Compilers 5 L7: Instruction Scheduling

Resource Constraints

• Each instruction type has a resource reservation t able

• Pipelined functional units: occupy only one slot

• Non-pipelined functional units: multiple time slots

• Instructions may use more than one resource

• Multiple units of same resource

• Limited instruction issue slots
may also be managed like a resource

Functional units

Ti
m

e

0

1

2

ld st alu fmpyfadd br ...

Advanced Compilers 6 L7: Instruction Scheduling

Example of a Machine Model

• Each instruction can execute 2 operations

• 1 ALU operation or branch operation
Op dst,src1,src2 executes in 1 clock

• 1 load or store operation
LD dst, addr result is available in 2 clocks

pipelined: can issue LD next clock
ST src, addr executes in 1 clock cycle

Advanced Compilers 7 L7: Instruction Scheduling

Basic Block Scheduling

LD R2,0(R1)

ADD R3,R3,R2

ST 4(R1),R2

ADD R3,R3,R4

ST 0(R7),R7

ST 12(R1),R3

2

2

1

2

memalu
i1

i2

i3

i4

i5

i6

i7

LD R3,8(R1)

1

1

Advanced Compilers 8 L7: Instruction Scheduling

With Resource Constraints

• NP-complete in general => Heuristics time!

• List Scheduling

READY = nodes with 0 predecessors

Loop until READY is empty {

Let n be the node in READY with highest priority

Schedule n in the earliest slot
that satisfies precedence + resource constraints

Update predecessor count of n’s successor nodes
Update READY

}

Advanced Compilers 9 L7: Instruction Scheduling

List Scheduling

• Scope: DAGs

• Schedules operations in topological order

• Never backtracks

• Variations

• Priority function for node n
• delay: max delay slots from n to any node
• critical path: max clocks from n to any node
• resource requirements
• source order

Advanced Compilers 10 L7: Instruction Scheduling

II. Introduction to Global Scheduling

c = b

if (a=0) goto L
LD R6,0(R1)

BEQZ R6,L

LD R7,0(R2)

ST 0(R3),R7

nop

nope = d + d

LD R8,0(R4)

ST 0(R5),R8

nop
L:

B1

B2

B3

L:

ADD R8,R8,R8

Advanced Compilers 11 L7: Instruction Scheduling

Result of Code Scheduling

LD R6,0(R1), LD R8,0(R4)

ADD R8,R8,R8 BEQZ R6,L

ST 0(R5),R8, ST 0(R3),R7
L:

B1

B3’B3ST 0(R5),R8

LD R7,0(R2)

Advanced Compilers 12 L7: Instruction Scheduling

Terminology

Control equivalence

• Two operations o1 and o2 are control
equivalent if o1 is executed if and only if
o2 is executed.

Control dependence

• An op o2 is control dependent on op o1
if the execution of o2 depends on the
outcome of o1.

Speculation

• An operation o1 is speculatively executed
if it is executed before all the operations it
control-dependent upon have been
executed.

• No exception, satisfy data dependences

Advanced Compilers 13 L7: Instruction Scheduling

Code Motions

Goal: Shorten execution time probabilistically

Moving instructions up

• Move instruction to a cut set (from entry)

• Speculation: even when not anticipated.

Moving instructions down

• Move instruction to a cut set (from exit)

• May execute extra instruction

• Can duplicate code

src

src

Advanced Compilers 14 L7: Instruction Scheduling

A Note on Data Dependences

a = 0 a = 1

Advanced Compilers 15 L7: Instruction Scheduling

General-Purpose Applications

• Lots of data dependences

• Key performance factor: memory latencies

• Move memory fetches up

• Speculative memory fetches can be expensive

• Control-intensive: get execution profile

• Static estimation
• Innermost loops are frequently executed:

back edges are likely to be taken
• Edges that branch to exit and exception routines are not

likely to be taken

• Dynamic profiling
• Instrument code and measure using representative data

Advanced Compilers 16 L7: Instruction Scheduling

A Basic Global Scheduling Algorithm

• Schedule innermost loops first

• Only upward code motion

• No creation of copies

• Only one level of speculation

Advanced Compilers 17 L7: Instruction Scheduling

Program Representation

• A region in a control flow graph is

• a set of basic blocks and all the edges connecting these blocks,

• such that control from outside the region must enter through a
single entry block.

• A function is represented as a hierarchy of region s

• The whole control flow graph is a region

• Each natural loop in the flow graph is a region

• Natural loops are hierarchically nested

• Schedule regions from inner to outer

• treat inner loop as a black box unit,
can schedule around it but not into it

• ignore all the loop back edges --> get an acyclic graph

Advanced Compilers 18 L7: Instruction Scheduling

Algorithm

Compute data dependences;
For each region from inner to outer {

For each basic block B in prioritized topological order {
CandBlocks = ControlEquiv{B} ∪

 Dominated-Successors{ControlEquiv{B}};
CandInsts = ready operations in CandBlocks;
For (t = 0, 1, ... until all operations from B are scheduled {

For (n in CandInst in priority order) {
if (n has no resource conflicts at time t) {

S(n) = < B, t >
Update resource commitments
Update data dependences

}
}
Update CandInsts;

}}}

• Priority functions

• Non-speculative before speculative

Advanced Compilers 19 L7: Instruction Scheduling

Extensions

• Prepass before scheduling: loop unrolling

• Especially important to move operation up loop bac k edges

...

Advanced Compilers 20 L7: Instruction Scheduling

Summary

• List scheduling

• Global scheduling

• Legal code motions

• Heuristics

