Lecture 4

More on Data Flow:
Constant Propagation
Control Flow: Speed, Loops

I Constant Propagation
II Efficiency of Data Flow Analysis
III Algorithm to find loops

Reading: Chapter 9.4, 9.6
I. Constant Propagation/Folding

- At every basic block boundary, for each variable \(v \)
 - determine if \(v \) is a constant
 - if so, what is the value?

\[
\begin{align*}
e &= 1 \\
x &= 2 \\
m &= x + e \\
e &= 3 \\
p &= e + 4
\end{align*}
\]
Semi-lattice Diagram

- Finite domain?
- Finite height?
Equivalent Definition

- **Meet Operation:**

<table>
<thead>
<tr>
<th>v1</th>
<th>v2</th>
<th>v1 ∧ v2</th>
</tr>
</thead>
<tbody>
<tr>
<td>undef</td>
<td>undef</td>
<td>undef</td>
</tr>
<tr>
<td></td>
<td>c₂</td>
<td>c₂</td>
</tr>
<tr>
<td></td>
<td>NAC</td>
<td>NAC</td>
</tr>
<tr>
<td>c₁</td>
<td>undef</td>
<td>c₁</td>
</tr>
</tbody>
</table>
| | c₂ | c₁, if c₁ = c₂
| | | NAC otherwise |
| | NAC | NAC |
| NAC | undef | NAC |
| | c₂ | NAC |
| | NAC | NAC |

- **Note:** undef ∧ c₂ = c₂!
Example

\[x = 2 \]

\[p = x \]
Transfer Functions

• Assume a basic block has only 1 instruction

• Let $\text{IN}[b,x]$, $\text{OUT}[b,x]$
 • be the information for variable x at entry and exit of basic block b

• $\text{OUT}[\text{entry}, x] = \text{undef}$, for all x.

• Non-assignment instructions: $\text{OUT}[b,x] = \text{IN}[b,x]$

• Assignment instructions: (next page)
Constant Propagation (Cont.)

- Let an assignment be of the form $x_3 = x_1 + x_2$
 - + represents a generic operator
 - $\text{OUT}[b,x] = \text{IN}[b,x]$, if $x \neq x_3$

<table>
<thead>
<tr>
<th>IN[b, x_1]</th>
<th>IN[b, x_2]</th>
<th>OUT[b, x_3]</th>
</tr>
</thead>
<tbody>
<tr>
<td>undef</td>
<td>undef</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c_2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NAC</td>
<td></td>
</tr>
<tr>
<td>c_1</td>
<td>undef</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c_2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NAC</td>
<td></td>
</tr>
<tr>
<td>NAC</td>
<td>undef</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c_2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NAC</td>
<td></td>
</tr>
</tbody>
</table>

- Use: $x \leq y$ implies $f(x) \leq f(y)$ to check if framework is monotone
 - $[v_1 \ \ v_2 \ldots] \leq [v_1' \ \ v_2' \ldots]$, $f ([v_1 \ \ v_2 \ldots]) \leq f ([v_1' \ \ v_2' \ldots])$
Distributive?

\[x = 2 \quad y = 3 \]
\[x = 3 \quad y = 2 \]

\[z = x + y \]
Summary of Constant Propagation

• A useful optimization
• Illustrates
 • abstract execution
 • an infinite semi-lattice
 • a non-distributive problem
II. Efficiency of Iterative Data Flow

• Assume forward data flow for this discussion

• Speed of convergence depends on the ordering of nodes

• How about:

I. A
 B
 C
 D

II. A
 D
 E
 B
 C
 exit
Depth-first Ordering: Reverse Postorder

- Preorder traversal: visit the parent before its children
- Postorder traversal: visit the children then the parent
- Preferred ordering: reverse postorder

- Intuitively
 - depth first postorder visits the farthest node as early as possible
 - reverse postorder delays visiting farthest node
“Reverse Post-Order” Iterative Algorithm

input: control flow graph CFG = (N, E, Entry, Exit)

// Boundary condition
OUT[Entry] = ∅

// Initialization for iterative algorithm
For each basic block B other than Entry
 OUT[B] = ∅

// iterate
While (changes to any OUT occur) {
 For each basic block B other than Entry
 in reverse post order {
 in[B] = ∪ (out[p]), for all predecessors p of B
 }
}
Consideration in Speed of Convergence

Does it matter if we go around the same cycle multiple times?

- **Cycles do not make a difference:**
 - reaching definitions, liveness

- **Cycles make a difference:** constant propagation

\[
\begin{align*}
a &= b \\
b &= c \\
c &= 1
\end{align*}
\]
Speed of Convergence

- If cycles do not add info:
 - Labeling nodes in a path by their reverse postorder rank:
 1 -> 4 -> 5 -> 7 -> 2 -> 4 ...
 - info flows down nodes of increasing reverse postorder rank in 1 pass
- Loop depth = max. # of “retreating edges” in any acyclic path
- Maximum # iterations in data flow algorithm = Loop depth + 2
 (2 is necessary even if there are no cycles)
- Knuth’s experiments show: average loop depth in real programs = 2.75
III. What is a Loop?

- **Goal:**
 - Define a loop in graph-theoretic terms (control flow graph)
 - Not sensitive to input syntax, a uniform treatment for all loops: DO, while, goto’s

- **Informally: A “natural” loop has**
 - edges that form at least a cycle
 - a single entry point
Dominators

- Node \(d \) dominates node \(n \) in a graph \((d \ dom n)\) if every path from the start node to \(n \) goes through \(d \)
 - a node dominates itself

- Immediate dominance:
 \[d \ \idom\ n : d \ dom n, d \neq n, \neg \exists m \text{ s.t. } d \ dom m \text{ and } m \ dom n \]
- Immediate dominance relationships form a tree
Finding Dominators

- **Definition**
 - Node d dominates node n in a graph ($d \text{ dom } n$) if every path from the start node to n goes through d

- **Formulated as a MOP problem**
 - node d lies on all possible paths reaching node $n \Rightarrow d \text{ dom } n$
 - Direction:
 - Values:
 - Meet operator:
 - Top:
 - Bottom:
 - Boundary condition: start/exit node =
 - Finite descending chains only?
 - Transfer function:

- **Speed:**
 - With reverse postorder, solution to most flow graphs (reducible flow graphs) found in 1 pass
Definition of Natural Loops

• Single entry-point: **header** \((d)\)
a header dominates all nodes in the loop

• A **back edge** \((n \rightarrow d)\) in a flow graph is
an edge whose destination dominates its source \((d \text{ dom } n)\)

• The **natural loop of a back edge** \((n \rightarrow d)\) is
\(d + \{ \text{nodes that can reach } n \text{ without going through } d \}\).
Graph Edges

- **Depth-first spanning tree**
 - Edges traversed in a depth-first search of a graph form a depth-first spanning tree

- **Categorizing edges in graph**
 - Advancing edges: from ancestor to proper descendant
 - Retreating edges: from descendant to ancestor (not necessarily proper)
 - Cross edges: all other edges
Back Edges

• Definition
 • Back edge: $n \rightarrow d$, d dom n

• Relationships between graph edges and back edges
 • a back edge must be a retreating edge
dominator \Rightarrow visit d before n, n must be a descendant of d
 • a retreating edge is not necessarily a back edge

• Most programs (all structured code, and most GOTO programs)
 • retreating edges = back edges
Constructing Natural Loops

• The *natural loop of a back edge* \((n \rightarrow d)\) is
 \(d + \{ \text{nodes that can reach } n \text{ without going through } d \} \).

• Remove \(d\) from the flow graph, find all predecessors of \(n\)

• Example

```
1 ——— 2 ——— 3 ——— 4 ——— 5 ——— 6 ——— 7 ——— 8
```

1 ——— 2

1 ——— 2 ——— 3

1 ——— 2 ——— 3 ——— 4
Inner Loops

- **If two loops do not have the same header**
 - they are either disjoint, or
 - one is entirely contained (nested within) the other
 -- inner loop, one that contains no other loop.

- **If two loops share the same header**
 - Hard to tell which is the inner loop
 - Combine as one
Summary

• Constant propagation

• Introduced the reverse postorder iterative algorithm

• Define loops in graph theoretic terms

• Definitions and algorithms for
 • Dominators
 • Back edges
 • Natural loops