I. Constant Propagation/Folding

- At every basic block boundary, for each variable \(v \)
 - determine if \(v \) is a constant
 - if so, what is the value?

\[
\begin{align*}
e &= 1 \\
x &= 2 \\
m &= x + e \\
e &= 3 \\
p &= e + 4
\end{align*}
\]
Semi-lattice Diagram

• Finite domain?
• Finite height?

Equivalent Definition

• Meet Operation:

<table>
<thead>
<tr>
<th>v1</th>
<th>v2</th>
<th>v1 ∧ v2</th>
</tr>
</thead>
<tbody>
<tr>
<td>undef</td>
<td>undef</td>
<td>undef</td>
</tr>
<tr>
<td>c2</td>
<td>c2</td>
<td>c2</td>
</tr>
<tr>
<td>NAC</td>
<td>NAC</td>
<td>NAC</td>
</tr>
<tr>
<td>c1</td>
<td>undef</td>
<td>c1</td>
</tr>
<tr>
<td>c2</td>
<td>c1, if c1 = c2, NAC otherwise</td>
<td></td>
</tr>
<tr>
<td>NAC</td>
<td>NAC</td>
<td>NAC</td>
</tr>
<tr>
<td>NAC</td>
<td>undef</td>
<td>NAC</td>
</tr>
<tr>
<td>c2</td>
<td>NAC</td>
<td>NAC</td>
</tr>
<tr>
<td>NAC</td>
<td>NAC</td>
<td>NAC</td>
</tr>
</tbody>
</table>

• Note: undef ∧ c2 = c2!
Example

Transfer Functions

- Assume a basic block has only 1 instruction
- Let $\text{IN}[b,x]$, $\text{OUT}[b,x]$
 - be the information for variable x at entry and exit of basic block b

- $\text{OUT}[\text{entry}, x] = \text{undef}$, for all x.
- Non-assignment instructions: $\text{OUT}[b,x] = \text{IN}[b,x]$
- Assignment instructions: (next page)
Constant Propagation (Cont.)

- Let an assignment be of the form $x_3 = x_1 + x_2$
 - $+$ represents a generic operator
 - $\text{OUT}[b, x] = \text{IN}[b, x]$, if $x \neq x_3$

<table>
<thead>
<tr>
<th>IN[b, x_1]</th>
<th>IN[b, x_2]</th>
<th>OUT[b, x_3]</th>
</tr>
</thead>
<tbody>
<tr>
<td>undef</td>
<td>undef</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c_2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NAC</td>
<td></td>
</tr>
<tr>
<td>c_1</td>
<td>undef</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c_2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NAC</td>
<td></td>
</tr>
<tr>
<td>NAC</td>
<td>undef</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c_2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NAC</td>
<td></td>
</tr>
</tbody>
</table>

- Use: $x \leq y$ implies $f(x) \leq f(y)$ to check if framework is monotone
 - $[v_1, v_2, \ldots] \leq [v_1', v_2', \ldots]$, $f([v_1, v_2, \ldots]) \leq f([v_1', v_2', \ldots])$

Distributive?

```
x = 2
y = 3
z = x + y
```

```
x = 3
y = 2
z = x + y
```
Summary of Constant Propagation

• A useful optimization
• Illustrates
 • abstract execution
 • an infinite semi-lattice
 • a non-distributive problem

II. Efficiency of Iterative Data Flow

• Assume forward data flow for this discussion
• Speed of convergence depends on the ordering of nodes

• How about:
 I.
 II.

 A

 B

 C

 D

 exit

 A

 B

 C

 D

 E

 exit
Depth-first Ordering: Reverse Postorder

- Preorder traversal: visit the parent before its children
- Postorder traversal: visit the children then the parent
- Preferred ordering: reverse postorder
- Intuitively
 - depth first postorder visits the farthest node as early as possible
 - reverse postorder delays visiting farthest node

“Reverse Post-Order” Iterative Algorithm

input: control flow graph $\text{CFG} = (N, E, \text{Entry}, \text{Exit})$

// Boundary condition
$\text{OUT}[\text{Entry}] = \emptyset$

// Initialization for iterative algorithm
For each basic block B other than Entry
$\text{OUT}[B] = \emptyset$

// iterate
While (changes to any OUT occur) {
 For each basic block B other than Entry
 in reverse post order {
 $\text{in}[B] = \cup (\text{out}[p])$, for all predecessors p of B
 $\text{out}[B] = f_B(\text{in}[B])$ // $\text{out}[B]=\text{gen}[B]\cup(\text{in}[B]-\text{kill}[B])$
 }
}
Consideration in Speed of Convergence

Does it matter if we go around the same cycle multiple times?

• Cycles do not make a difference:
 • reaching definitions, liveness

• Cycles make a difference: constant propagation

\[
\begin{aligned}
a &= b \\
b &= c \\
c &= 1
\end{aligned}
\]

Speed of Convergence

• If cycles do not add info:
 • Labeling nodes in a path by their reverse postorder rank:
 1 -> 4 -> 5 -> 7 -> 2 -> 4 ...
 • info flows down nodes of increasing reverse postorder rank in 1 pass
 • Loop depth = max. # of “retreating edges” in any acyclic path

• Maximum # iterations in data flow algorithm = Loop depth+2
 (2 is necessary even if there are no cycles)

• Knuth’s experiments show: average loop depth in real programs = 2.75
III. What is a Loop?

• Goal:
 • Define a loop in graph-theoretic terms (control flow graph)
 • Not sensitive to input syntax, a uniform treatment for all loops: DO, while, goto’s

• Informally: A “natural” loop has
 • edges that form at least a cycle
 • a single entry point

Dominators

• Node d dominates node n in a graph $(d \text{ dom } n)$ if every path from the start node to n goes through d
 • a node dominates itself

• Immediate dominance:
 $d \text{ idom } n : d \text{ dom } n, d \neq n, \exists m$ s.t. $d \text{ dom } m$ and $m \text{ dom } n$

• Immediate dominance relationships form a tree
Finding Dominators

- **Definition**
 - Node d dominates node n in a graph ($d \text{ dom } n$) if every path from the start node to n goes through d

- **Formulated as a MOP problem**
 - Node d lies on all possible paths reaching node $n \Rightarrow d \text{ dom } n$
 - Direction:
 - Values:
 - Meet operator:
 - Top:
 - Bottom:
 - Boundary condition: start/exit node =
 - Finite descending chains only?
 - Transfer function:

- **Speed:**
 - With reverse postorder, solution to most flow graphs (reducible flow graphs) found in 1 pass

Definition of Natural Loops

- Single entry-point: header (d)
 a header dominates all nodes in the loop

- A back edge ($n \rightarrow d$) in a flow graph is
 an edge whose destination dominates its source ($d \text{ dom } n$)

- The natural loop of a back edge ($n \rightarrow d$) is
 $d + \{\text{nodes that can reach } n \text{ without going through } d \}$.
Graph Edges

• Depth-first spanning tree
 • Edges traversed in a depth-first search of a graph form a depth-first spanning tree

[Diagram showing depth-first spanning tree]

• Categorizing edges in graph
 • Advancing edges: from ancestor to proper descendant
 • Retreating edges: from descendant to ancestor (not necessarily proper)
 • Cross edges: all other edges

Back Edges

• Definition
 • Back edge: \(n \rightarrow d, d \text{ dom } n \)

• Relationships between graph edges and back edges
 • a back edge must be a retreating edge
 dominator \(\Rightarrow \) visit \(d \) before \(n \), \(n \) must be a descendant of \(d \)
 • a retreating edge is not necessarily a back edge

• Most programs (all structured code, and most GOTO programs)
 • retreating edges = back edges
Constructing Natural Loops

• The **natural loop of a back edge** \((n \rightarrow d)\) is
 \(d + \{ \text{nodes that can reach } n \text{ without going through } d \}\).

• Remove \(d\) from the flow graph, find all predecessors of \(n\)
• Example

Inner Loops

• If two loops do not have the same header
 • they are either disjoint, or
 • one is entirely contained (nested within) the other
 -- inner loop, one that contains no other loop.

• If two loops share the same header
 • Hard to tell which is the inner loop
 • Combine as one
Summary

• Constant propagation

• Introduced the reverse postorder iterative algorithm

• Define loops in graph theoretic terms

• Definitions and algorithms for
 • Dominators
 • Back edges
 • Natural loops