Lecture 3

Foundation of Data Flow Analysis

I Semi-lattice (set of values, meet operator)
II Transfer functions
III Correctness, precision and convergence
IV Meaning of Data Flow Solution

Reading: Chapter 9.3
I. Purpose of a Framework

- **Purpose 1**
 - Prove properties of entire family of problems once and for all
 - Will the program converge?
 - What does the solution to the set of equations mean?

- **Purpose 2:**
 - Aid in software engineering: re-use code
The Data-Flow Framework

• **Data-flow problems** \((F, V, \wedge)\) are defined by
 - A semilattice
 - domain of values \((V)\)
 - meet operator \((\wedge)\)
 - A family of transfer functions \((F : V \rightarrow V)\)
Semi-lattice: Structure of the Domain of Values

- A semi-lattice $S = < V, \wedge >$

- Properties of the meet operator
 - idempotent: $x \wedge x = x$
 - commutative: $x \wedge y = y \wedge x$
 - associative: $x \wedge (y \wedge z) = (x \wedge y) \wedge z$

- Examples of meet operators ?
- Non-examples ?
Example of A Semi-Lattice Diagram

- \((V, \wedge) : V = \{ x \mid \text{such that } x \subseteq \{d_1,d_2,d_3\}\}, \wedge = \cup\)

\[
\begin{array}{c}
\{\}
\end{array}
\quad
\begin{array}{c}
(\top)
\end{array}
\]

\[
\begin{array}{c}
\{d_1\}
\end{array}
\quad
\begin{array}{c}
\{d_2\}
\end{array}
\quad
\begin{array}{c}
\{d_3\}
\end{array}
\]

\[
\begin{array}{c}
\{d_1,d_2\}
\end{array}
\quad
\begin{array}{c}
\{d_1,d_3\}
\end{array}
\quad
\begin{array}{c}
\{d_2,d_3\}
\end{array}
\]

\[
\begin{array}{c}
\{d_1,d_2,d_3\}
\end{array}
\quad
\begin{array}{c}
(\bot)
\end{array}
\]

- \(x \wedge y = \text{first common descendant of } x \& y\)
- Define top element \(\top\), such that \(x \wedge \top = x\)
- Define bottom element \(\bot\), such that \(x \wedge \bot = \bot\)
- Semi-lattice diagram : picture of a partial order!
A Meet Operator Defines a Partial Order (vice versa)

• Definition of partial order \leq: $x \leq y$ if and only if $x \wedge y = x$

 $\begin{array}{c}
 \text{path} \\
 \downarrow \\
 x \\
 \equiv \\
 (x \wedge y = x) \\
 \equiv \\
 (x \leq y)
 \end{array}$

• Properties of meet operator guarantee that \leq is a partial order
 • Reflexive: $x \leq x$
 • Antisymmetric: if $x \leq y$ and $y \leq x$ then $x = y$
 • Transitive: if $x \leq y$ and $y \leq z$ then $x \leq z$

• $(x < y) \equiv (x \leq y) \wedge (x \neq y)$

• A semi-lattice diagram:
 • Set of nodes: set of values
 • Set of edges $\{(y, x): x < y \text{ and } \neg \exists z \text{ s.t. } (x < z) \wedge (z < y)\}$

• Example:
 • Meet operator: \cup Partial order \leq:
Summary

Three ways to define a semi-lattice:

- Set of values + meet operator
 - idempotent: \(x \land x = x \)
 - commutative: \(x \land y = y \land x \)
 - associative: \(x \land (y \land z) = (x \land y) \land z \)

- Set of values + partial order
 - Reflexive: \(x \leq x \)
 - Antisymmetric: if \(x \leq y \) and \(y \leq x \) then \(x = y \)
 - Transitive: if \(x \leq y \) and \(y \leq z \) then \(x \leq z \)

- A semi-lattice diagram
 - No cycles
 - \(\top \) is on top of everything
 - \(\bot \) is at the bottom of everything
Another Example

• Semi-lattice
 • \(V = \{ x \mid \text{such that } x \subseteq \{ d_1, d_2, d_3 \} \} \)
 • \(\wedge = \cap \)

\[
\begin{align*}
\{d_1,d_2,d_3\} & \quad (\top) \\
\{d_1,d_2\} & \quad \{d_1,d_3\} & \quad \{d_2,d_3\} \\
\{d_1\} & \quad \{d_2\} & \quad \{d_3\} \\
\{\} & \quad (\bot)
\end{align*}
\]

• \(\leq \) is
One Element at a Time

- A semi-lattice for data flow problems can get quite large: 2^n elements for n var/definition

- A useful technique:
 - define semi-lattice for 1 element
 - product of semi-lattices for all elements

- **Example**: Union of definitions
 - For each element
 - def1
 - $\{\}$
 - $\{d_1\}$
 - def2
 - $\{\}$
 - $\{d_2\}$
 - def1 x def2
 - $\{\},\{\}$
 - $\{d_1\},\{\}$
 - $\{\},\{d_2\}$
 - $\{d_1\},\{d_2\}$

- $<x_1, x_2> \leq <y_1, y_2>$ iff $x_1 \leq y_1$ and $x_2 \leq y_2$
Descending Chain

• Definition
 • The **height** of a lattice is the largest number of > relations that will fit in a descending chain.

\[x_0 > x_1 > \ldots \]

• Height of values in reaching definitions?

• Important property: finite descending chains
II. Transfer Functions

- A family of transfer functions F
- Basic Properties $f : V \rightarrow V$

 - Has an identity function
 - $\exists f$ such that $f(x) = x$, for all x.

 - Closed under composition
 - if $f_1, f_2 \in F$, $f_1 \cdot f_2 \in F$
Monotonicity: 2 Equivalent Definitions

- A framework \((F, V, \land)\) is monotone iff
 - \(x \leq y\) implies \(f(x) \leq f(y)\)

- Equivalently,
 a framework \((F, V, \land)\) is monotone iff
 - \(f(x \land y) \leq f(x) \land f(y)\)
 - meet inputs, then apply \(f\)
 - \(\leq\)
 - apply \(f\) individually to inputs, then meet results
Example

- **Reaching definitions**: \(f(x) = \text{Gen} \cup (x - \text{Kill}), \land = \cup \)

 - Definition 1:

 - Let \(x_1 \leq x_2 \),

 \[
 f(x_1): \text{Gen} \cup (x_1 - \text{Kill})
 \]

 \[
 f(x_2): \text{Gen} \cup (x_2 - \text{Kill})
 \]

 - Definition 2:

 - \(f(x_1 \land x_2) = (\text{Gen} \cup ((x_1 \cup x_2) - \text{Kill})) \)

 \[
 f(x_1) \land f(x_2) = (\text{Gen} \cup (x_1 - \text{Kill})) \cup (\text{Gen} \cup (x_2 - \text{Kill}))
 \]
Important Note

- Monotone framework **does not mean** that $f(x) \leq x$
 - e.g. Reaching definition for two definitions in program
 - suppose: $f: \text{Gen} = \{d_1\} ; \text{Kill} = \{d_2\}$
Distributivity

- A framework (F, V, \land) is distributive if and only if
 - $f(x \land y) = f(x) \land f(y)$,

 meet input, then apply f is equal to
 apply the transfer function individually then merge result
III. Properties of Iterative Algorithm

- Given:
 - ∧ and monotone data flow framework
 - Finite descending chain
 - \(\Rightarrow \) Converges

- Initialization of interior points to T
 - \(\Rightarrow \) Maximum Fixed Point (MFP) solution of equations
Behavior of iterative algorithm (intuitive)

For each IN/OUT of an interior program point:
- Its value cannot go up (new value ≤ old value) during algorithm
- Start with T (largest value)
- Proof by induction
 - Apply 1st transfer function / meet operator ≤ old value (T)
 - Inputs to “meet” change (get smaller)
 - since inputs get smaller, new output ≤ old output
 - Inputs to transfer functions change (get smaller)
 - monotonicity of transfer function:
 since input gets smaller, new output ≤ old output
- Algorithm iterates until equations are satisfied
- Values do not come down unless some constraints drive them down.
- Therefore, finds the largest solution that satisfies the equations
IV. What Does the Solution Mean?

- IDEAL data flow solution
 - Let $f_1, ..., f_m : \in F, f_i$ is the transfer function for node i
 \[
 f_p = f_{n_k} \circ ... \circ f_{n_1}, \quad p \text{ is a path through nodes } n_1, ..., n_k
 \]
 - f_p = identify function, if p is an empty path
 - For each node n: $\land f_{p_i}$ (boundary value), for all possibly executed paths p_i reaching n
 - Example

\[
\begin{array}{c}
\text{if } \text{sqr}(y) \geq 0 \\
\text{false} & \text{true}
\end{array}
\]

\[
\begin{array}{c}
x = 0 \\
x = 0 \\
x = 1
\end{array}
\]

- Determining all possibly executed paths is undecidable
Meet-Over-Paths MOP

- Err in the conservative direction

- Meet-Over-Paths MOP
 - Assume every edge is traversed
 - For each node n:

 $$\text{MOP}(n) = \bigwedge f_{p_i} \text{ (boundary value), for all paths } p_i \text{ reaching } n$$

- Compare MOP with IDEAL
 - MOP includes more paths than IDEAL
 - $\text{MOP} = \text{IDEAL} \bigwedge \text{Result(Unexecuted-Paths)}$
 - $\text{MOP} \leq \text{IDEAL}$
 - MOP is a “smaller” solution, more conservative, safe

- Data Flow Solution $\leq \text{MOP} \leq \text{IDEAL}$
 - as close to MOP from below as possible
Solving Data Flow Equations

• What is the difference between MOP and MFP of data flow equations?

Therefore

• FP ≤ MFP ≤ MOP ≤ IDEAL
• FP, MFP, MOP are safe
• If framework is distributive, FP ≤ MFP = MOP ≤ IDEAL
Summary

- A data flow framework
 - Semi-lattice
 - set of values (top)
 - meet operator
 - finite descending chains?
 - Transfer functions
 - summarizes each basic block
 - boundary conditions

- Properties of data flow framework:
 - monotone framework and finite descending chains
 \[\Rightarrow \text{iterative algorithm converges} \]
 \[\Rightarrow \text{finds maximum fixed point (MFP)} \]
 \[\Rightarrow \text{FP} \leq \text{MFP} \leq \text{MOP} \leq \text{IDEAL} \]

 - distributive framework
 \[\Rightarrow \text{FP} \leq \text{MFP} = \text{MOP} \leq \text{IDEAL} \]