I. Purpose of a Framework

• Purpose 1
 • Prove properties of entire family of problems once and for all
 • Will the program converge?
 • What does the solution to the set of equations mean?

• Purpose 2:
 • Aid in software engineering: re-use code
The Data-Flow Framework

- Data-flow problems \((F, V, \wedge)\) are defined by
 - A semilattice
 - domain of values \((V)\)
 - meet operator \((\wedge)\)
 - A family of transfer functions \((F: V \rightarrow V)\)

Semi-lattice: Structure of the Domain of Values

- A semi-lattice \(S = < \text{a set of values } V, \text{ a meet operator } \wedge >\)

- Properties of the meet operator
 - idempotent: \(x \wedge x = x\)
 - commutative: \(x \wedge y = y \wedge x\)
 - associative: \(x \wedge (y \wedge z) = (x \wedge y) \wedge z\)

- Examples of meet operators ?
- Non-examples ?
Example of a Semi-Lattice Diagram

- \((V, \wedge) : V = \{ x | \text{such that } x \subseteq \{d_1,d_2,d_3\} \}, \wedge = \cup\)

\begin{center}
\begin{tikzpicture}
\node at (0,0) {\emptyset} (t);
\node at (2,0) {\{d_1\}} (d1);
\node at (4,0) {\{d_2\}} (d2);
\node at (6,0) {\{d_3\}} (d3);
\node at (2,-1) {\{d_1,d_2\}} (d12);
\node at (4,-1) {\{d_1,d_3\}} (d13);
\node at (6,-1) {\{d_2,d_3\}} (d23);
\node at (2,-2) {\{d_1,d_2,d_3\}} (d123);
\draw (t) -- (d1);
\draw (t) -- (d2);
\draw (t) -- (d3);
\draw (d1) -- (d12);
\draw (d2) -- (d12);
\draw (d3) -- (d13);
\draw (d2) -- (d23);
\draw (d3) -- (d23);
\draw (d12) -- (d123);
\draw (d13) -- (d123);
\draw (d23) -- (d123);
\end{tikzpicture}
\end{center}

- \(x \wedge y = \text{first common descendant of } x \& y\)
- Define top element \(\top\), such that \(x \wedge \top = x\)
- Define bottom element \(\bot\), such that \(x \wedge \bot = \bot\)
- Semi-lattice diagram: picture of a partial order!

A Meet Operator Defines a Partial Order (vice versa)

- Definition of partial order \(\leq\): \(x \leq y\) if and only if \(x \wedge y = x\)

\begin{center}
\begin{tikzpicture}
\node at (0,0) {x} (x);
\node at (1,1) {y} (y);
\node at (0.5,0.5) \(\equiv\) (equiv);
\draw (x) -- (equiv) -- (y);
\end{tikzpicture}
\end{center}

- Properties of meet operator guarantee that \(\leq\) is a partial order
 - Reflexive: \(x \leq x\)
 - Antisymmetric: if \(x \leq y\) and \(y \leq x\) then \(x = y\)
 - Transitive: if \(x \leq y\) and \(y \leq z\) then \(x \leq z\)

\((x < y) \equiv (x \leq y) \wedge (x \neq y)\)

- A semi-lattice diagram:
 - Set of nodes: set of values
 - Set of edges \(\{(y,x) : x < y \text{ and } \exists z \text{ s.t. } (x < z) \wedge (z < y) \}\)

- Example:
 - Meet operator: \(\cup\) Partial order \(\leq\):
Summary

- Three ways to define a semi-lattice:
 - Set of values + meet operator
 - idempotent: \(x \land x = x \)
 - commutative: \(x \land y = y \land x \)
 - associative: \(x \land (y \land z) = (x \land y) \land z \)
 - Set of values + partial order
 - Reflexive: \(x \leq x \)
 - Antisymmetric: if \(x \leq y \) and \(y \leq x \) then \(x = y \)
 - Transitive: if \(x \leq y \) and \(y \leq z \) then \(x \leq z \)
 - A semi-lattice diagram
 - No cycles
 - \(\top \) is on top of everything
 - \(\bot \) is at the bottom of everything

Another Example

- Semi-lattice
 - \(V = \{ x \mid \text{such that } x \subseteq \{ d_1, d_2, d_3 \} \} \)
 - \(\land = \cap \)

\[
\begin{array}{c}
 \{d_1, d_2, d_3\} \\
 \{d_1, d_2\} \quad \{d_1, d_3\} \quad \{d_2, d_3\} \\
 \{d_1\} \quad \{d_2\} \quad \{d_3\} \\
 \emptyset \quad \emptyset \quad \emptyset \\
\end{array}
\]

- \(\leq \) is
One Element at a Time

- A semi-lattice for data flow problems can get quite large: 2^n elements for n var/definition

- A useful technique:
 - define semi-lattice for 1 element
 - product of semi-lattices for all elements

- Example: Union of definitions
 - For each element
 - def1
 - $\{\}$
 - $\{d_1\}$
 - def2
 - $\{\}$
 - $\{d_2\}$
 - def1 x def2
 - $\{\},\{\}$
 - $\{d_1\},\{\}$
 - $\{\},\{d_2\}$
 - $\{d_1\},\{d_2\}$
 - $<x_1, x_2> \leq <y_1, y_2>$ iff $x_1 \leq y_1$ and $x_2 \leq y_2$

Descending Chain

- Definition
 - The height of a lattice is the largest number of $>$ relations that will fit in a descending chain.
 - $x_0 > x_1 > \ldots$

- Height of values in reaching definitions?

- Important property: finite descending chains
II. Transfer Functions

- A family of transfer functions F
- Basic Properties $f : V \rightarrow V$
 - Has an identity function
 • $\exists f$ such that $f(x) = x$, for all x.
 - Closed under composition
 • if $f_1, f_2 \in F$, $f_1 \cdot f_2 \in F$

Monotonicity: 2 Equivalent Definitions

- A framework (F, V, \wedge) is monotone iff
 • $x \leq y$ implies $f(x) \leq f(y)$

- Equivalently, a framework (F, V, \wedge) is monotone iff
 • $f(x \wedge y) \leq f(x) \wedge f(y)$,
 • meet inputs, then apply f
 • apply f individually to inputs, then meet results
Example

- Reaching definitions: \(f(x) = \text{Gen} \cup (x \cdot \text{Kill}) \wedge = \cup \)
 - Definition 1:
 - Let \(x_1 \leq x_2 \),
 \(f(x_1): \text{Gen} \cup (x_1 \cdot \text{Kill}) \)
 \(f(x_2): \text{Gen} \cup (x_2 \cdot \text{Kill}) \)
 - Definition 2:
 - \(f(x_1 \land x_2) = (\text{Gen} \cup ((x_1 \cup x_2) \cdot \text{Kill})) \)
 \(f(x_1) \land f(x_2) = (\text{Gen} \cup (x_1 \cdot \text{Kill})) \lor (\text{Gen} \cup (x_2 \cdot \text{Kill})) \)

Important Note

- Monotone framework does not mean that \(f(x) \leq x \)
 - e.g. Reaching definition for two definitions in program
 - suppose: \(f: \text{Gen} = \{d_1\}; \text{Kill} = \{d_2\} \)
Distributivity

- A framework \((F, V, \wedge)\) is distributive if and only if

 \[f(x \wedge y) = f(x) \wedge f(y) , \]

 meet input, then apply \(f\) is equal to
 apply the transfer function individually then merge result

III. Properties of Iterative Algorithm

- Given:

 - \(\wedge\) and monotone data flow framework
 - Finite descending chain
 - \(\Rightarrow\) Converges

- Initialization of interior points to \(T\)

 - \(\Rightarrow\) Maximum Fixed Point (MFP) solution of equations
Behavior of iterative algorithm (intuitive)

For each IN/OUT of an interior program point:
• Its value cannot go up (new value \(\leq \) old value) during algorithm
• Start with T (largest value)
• Proof by induction
 • Apply 1st transfer function / meet operator \(\leq \) old value (T)
 • Inputs to “meet” change (get smaller)
 • since inputs get smaller, new output \(\leq \) old output
 • Inputs to transfer functions change (get smaller)
 • monotonicity of transfer function:
 since input gets smaller, new output \(\leq \) old output
• Algorithm iterates until equations are satisfied
• Values do not come down unless some constraints drive them down.
• Therefore, finds the largest solution that satisfies the equations

IV. What Does the Solution Mean?

• IDEAL data flow solution
 • Let \(f_1, \ldots, f_m : E \rightarrow F \), \(f_i \) is the transfer function for node \(i \)
 \[
 f_p = f_{n_k} \cdot \ldots \cdot f_{n_1}, \quad p \text{ is a path through nodes } n_1, \ldots, n_k
 \]
 \[
 f_p = \text{identify function, if } p \text{ is an empty path}
 \]
 • For each node \(n \): \(f_{p_i} \) (boundary value), for all possibly executed paths \(p_i \) reaching \(n \)
 • Example

```
  if sqrt(y) >= 0
    if x = 0
      false
    else
      true
  else
    x = 1
```
• Determining all possibly executed paths is undecidable
Meet-Over-Paths MOP

- Err in the conservative direction

- Meet-Over-Paths MOP
 - Assume every edge is traversed
 - For each node n:
 \[\text{MOP}(n) = \land_{p_i} (\text{boundary value}), \text{for all paths } p_i \text{ reaching } n \]

- Compare MOP with IDEAL
 - MOP includes more paths than IDEAL
 - $\text{MOP} = \text{IDEAL} \land \text{Result(Unexecuted-Paths)}$
 - $\text{MOP} \leq \text{IDEAL}$
 - MOP is a “smaller” solution, more conservative, safe

- Data Flow Solution $\leq \text{MOP} \leq \text{IDEAL}$
 - as close to MOP from below as possible

Solving Data Flow Equations

- What is the difference between MOP and MFP of data flow equations?

- Therefore
 - $\text{FP} \leq \text{MFP} \leq \text{MOP} \leq \text{IDEAL}$
 - FP, MFP, MOP are safe
 - If framework is distributive, $\text{FP} \leq \text{MFP} = \text{MOP} \leq \text{IDEAL}$
Summary

- **A data flow framework**
 - Semi-lattice
 - set of values (top)
 - meet operator
 - finite descending chains?
 - Transfer functions
 - summarizes each basic block
 - boundary conditions
- **Properties of data flow framework:**
 - monotone framework and finite descending chains
 \[\Rightarrow \text{iterative algorithm converges} \]
 \[\Rightarrow \text{finds maximum fixed point (MFP)} \]
 \[\Rightarrow \text{FP} \leq \text{MFP} \leq \text{MOP} \leq \text{IDEAL} \]
- distributive framework
 \[\Rightarrow \text{FP} \leq \text{MFP} = \text{MOP} \leq \text{IDEAL} \]