
Advanced Compilers M. Lam

Lecture 3

Foundation of Data Flow Analysis

I Semi-lattice (set of values, meet operator)

II Transfer functions

III Correctness, precision and convergence

IV Meaning of Data Flow Solution

Reading: Chapter 9.3

Advanced Compilers 2 L3:Foundation of Data Flow Analysis

I. Purpose of a Framework

• Purpose 1

• Prove properties of entire family of problems once and for all

• Will the program converge?
• What does the solution to the set of equations mean?

• Purpose 2:

• Aid in software engineering: re-use code

Advanced Compilers 3 L3:Foundation of Data Flow Analysis

The Data-Flow Framework

• Data-flow problems (F, V, ∧) are defined by

• A semilattice

• domain of values (V)
• meet operator (∧)

• A family of transfer functions (F: V → V)

Advanced Compilers 4 L3:Foundation of Data Flow Analysis

Semi-lattice: Structure of the Domain of Values

• A semi-lattice S = < a set of values V, a meet operator ∧ >

• Properties of the meet operator

• idempotent: =

• commutative: =

• associative:

• Examples of meet operators ?

• Non-examples ?

x x∧ x

x y∧ y x∧
x y z∧()∧ x y∧() z∧=

Advanced Compilers 5 L3:Foundation of Data Flow Analysis

Example of A Semi-Lattice Diagram

• (V, ∧) : V = { x | such that x ⊆ {d1,d2,d3}}, ∧ = ∪

• = first common descendant of x & y

• Define top element , such that

• Define bottom element , such that

• Semi-lattice diagram : picture of a partial order!

{d1,d2,d3}

{d1,d3}{d1,d2} {d2,d3}

{}

{d2}{d1} {d3}

(⊥)

⊥()

x y∧

⊥

x ∧ ⊥ x=

⊥ x ⊥∧ ⊥=

important

Advanced Compilers 6 L3:Foundation of Data Flow Analysis

A Meet Operator Defines a Partial Order (vice versa)

• Definition of partial order ≤ : if and only if

• Properties of meet operator guarantee that ≤ is a partial order

• Reflexive:

• Antisymmetric: if and then

• Transitive: if and then

• () ≡

• A semi-lattice diagram:

• Set of nodes: set of values

• Set of edges {(y, x): and s.t. }

• Example:

• Meet operator: ∪ Partial order ≤ :

x y≤ x y∧ x=

y

x

(x ∧ y = x) (x ≤ y)≡ ≡

pa
th

x x≤

x y≤ y x≤ x y=

x y≤ y z≤ x z≤

x y< x y≤() x y≠()∧

x y< z∃¬ x z<() z y<()∧

Advanced Compilers 7 L3:Foundation of Data Flow Analysis

Summary

• Three ways to define a semi-lattice:

• Set of values + meet operator

• idempotent: =
• commutative: =
• associative:

• Set of values + partial order

• Reflexive:
• Antisymmetric: if and then
• Transitive: if and then

• A semi-lattice diagram

• No cycles
• is on top of everything
• is at the bottom of everything

x x∧ x

x y∧ y x∧
x y z∧()∧ x y∧() z∧=

x x≤
x y≤ y x≤ x y=

x y≤ y z≤ x z≤

⊥

⊥

Advanced Compilers 8 L3:Foundation of Data Flow Analysis

Another Example

• Semi-lattice

• V = {x | such that x ⊆ { d1, d2, d3}}

• ∧ = ∩

• ≤ is

{d1,d2,d3}

{d1,d3}{d1,d2} {d2,d3}

{}

{d2}{d1} {d3}

(⊥)

⊥

()

Advanced Compilers 9 L3:Foundation of Data Flow Analysis

One Element at a Time

• A semi-lattice for data flow problems can get quite large:
2n elements for n var/definition

• A useful technique:

• define semi-lattice for 1 element

• product of semi-lattices for all elements

• Example: Union of definitions

• For each element

• <x1, x2> ≤ <y1, y2> iff x1 ≤ y1 and x2 ≤ y2

{}

{d1}

{}

{d2}

{},{}

{d1},{d2}

{d1},{} {},{d2}

def1 def2 def1 x def2

Advanced Compilers 10 L3:Foundation of Data Flow Analysis

Descending Chain

• Definition

• The height of a lattice is the largest number of >
relations that will fit in a descending chain.

• Height of values in reaching definitions?

• Important property: finite descending chains

x0 x1 …> >

Advanced Compilers 11 L3:Foundation of Data Flow Analysis

II. Transfer Functions

• A family of transfer functions F

• Basic Properties f :

• Has an identity function

• ∃ f such that f (x) = x, for all x.

• Closed under composition

• if ,

V V→

f1 f2, F∈ f1 f2• F∈

Advanced Compilers 12 L3:Foundation of Data Flow Analysis

Monotonicity: 2 Equivalent Definitions

• A framework (F, V, ∧) is monotone iff

• implies

• Equivalently,
a framework (F, V, ∧) is monotone iff

• ,

• meet inputs, then apply f
≤
apply f individually to inputs, then meet results

x y≤ f x() f y()≤

f x y∧() f x() f y()∧≤

Advanced Compilers 13 L3:Foundation of Data Flow Analysis

Example

• Reaching definitions: f(x) = Gen ∪ (x - Kill), ∧ = ∪

• Definition 1:

• Let x1≤ x2,

f(x1): Gen ∪ (x1 - Kill)

f(x2): Gen ∪ (x2 - Kill)

• Definition 2:

• f (x1∧x2) = (Gen ∪ ((x1 ∪ x2) - Kill))

f(x1) ∧ f(x2) = (Gen ∪ (x1 - Kill)) ∪ (Gen ∪ (x2 - Kill))

Advanced Compilers 14 L3:Foundation of Data Flow Analysis

Important Note

• Monotone framework does not mean that f(x) ≤ x

• e.g. Reaching definition for two definitions in program

• suppose: f: Gen = {d1} ; Kill = {d2}

Advanced Compilers 15 L3:Foundation of Data Flow Analysis

Distributivity

• A framework (F, V, ∧) is distributive if and only if

• ,

meet input, then apply f is equal to
apply the transfer function individually then merge result

f x y∧() f x() f y()∧=

Advanced Compilers 16 L3:Foundation of Data Flow Analysis

III. Properties of Iterative Algorithm

• Given:

• ∧ and monotone data flow framework

• Finite descending chain

• � Converges

• Initialization of interior points to T

• � Maximum Fixed Point (MFP) solution of equations

Advanced Compilers 17 L3:Foundation of Data Flow Analysis

Behavior of iterative algorithm (intuitive)

For each IN/OUT of an interior program point:

• Its value cannot go up (new value ≤ old value) during algorithm

• Start with T (largest value)

• Proof by induction

• Apply 1st transfer function / meet operator ≤ old value (T)

• Inputs to “meet” change (get smaller)

• since inputs get smaller, new output ≤ old output

• Inputs to transfer functions change (get smaller)

• monotonicity of transfer function:
since input gets smaller, new output ≤ old output

• Algorithm iterates until equations are satisfied

• Values do not come down unless some constraints drive them down.

• Therefore, finds the largest solution that satisfies the equations

Advanced Compilers 18 L3:Foundation of Data Flow Analysis

IV. What Does the Solution Mean?

• IDEAL data flow solution

• Let f1, ..., fm : , fi is the transfer function for node i

, is a path through nodes n1, ..., nk

fp = identify function, if is an empty path

• For each node n: ∧ (boundary value),
for all possibly executed paths reaching

• Example

• Determining all possibly executed paths is undecidable

F∈

fp fnk
… fn1

••= p

p

fpi
pi n

if sqr(y) >= 0

x = 0 x = 1

false true

Advanced Compilers 19 L3:Foundation of Data Flow Analysis

Meet-Over-Paths MOP

• Err in the conservative direction

• Meet-Over-Paths MOP

• Assume every edge is traversed

• For each node n:

MOP(n) = ∧ (boundary value), for all paths reaching

• Compare MOP with IDEAL

• MOP includes more paths than IDEAL

• MOP = IDEAL ∧ Result(Unexecuted-Paths)

• MOP ≤ IDEAL

• MOP is a “smaller” solution, more conservative, safe

• Data Flow Solution ≤ MOP ≤ IDEAL

• as close to MOP from below as possible

fpi
pi n

Advanced Compilers 20 L3:Foundation of Data Flow Analysis

Solving Data Flow Equations

• What is the difference between MOP and MFP of data flow
equations?

• Therefore

• FP ≤ MFP ≤ MOP ≤ IDEAL

• FP, MFP, MOP are safe

• If framework is distributive, FP ≤ MFP = MOP ≤ IDEAL

F1 F2

F3

Advanced Compilers 21 L3:Foundation of Data Flow Analysis

Summary

• A data flow framework

• Semi-lattice

• set of values (top)
• meet operator
• finite descending chains?

• Transfer functions

• summarizes each basic block
• boundary conditions

• Properties of data flow framework:

• monotone framework and finite descending chains

� iterative algorithm converges
� finds maximum fixed point (MFP)
� FP ≤ MFP ≤ MOP ≤ IDEAL

• distributive framework
� FP ≤ MFP = MOP ≤ IDEAL

