
Advanced Compilers M. Lam

Lecture 1

Introduction to CS243

I Why Study Compilers?

II Course Syllabus

Chapters 1.1-1.5, 8.4, 8.5, 9.1

Advanced Compilers 2 Introduction

I. Why Study Compilers?

Advanced Compilers 3 Introduction

Reasons for Studying Compilers

• Compilers are important

• An essential programming tool
• Improves software productivity by hiding low-level details

• A tool for designing and evaluating computer architectures
• Inspired RISC, VLIW machines
• Machines’ performance measured on compiled code

• Techniques for developing other programming tools
• Examples: error detection tools

• Little languages and program translations
can be used to solve other problems

• Compilers have impact: affect all programs

Advanced Compilers 4 Introduction

Compiler Study Trains Good Developers

Excellent software engineering case study

• Optimizing compilers are hard to build
• Input: all programs
• Objectives:

• Methodology for solving complex real-life problems
• Key to success: Formulate the right approximation!

• Desired solutions are often NP-complete / undecidable
• Where theory meets practice

• Can’t be solved by just pure hacking
-- theory aids generality and correctness

• Can’t be solved by just theory
-- experimentation validates and provides feedback to
problem formulation

• Reasoning about programs, reliability & security
makes you a better programmer

There are programmers, and there are tool builders ...

Advanced Compilers 5 Introduction

Example

• Tools for web application security vulnerabilities

• PQL: a general language for describing information flow of
interest

• Static techniques to locate errors automatically

• Illustrates:

• Exciting research area!
• Importance of programming tools
• Sophistication of static analysis techniques
• What static analysis looks like
• Use of little languages
• Combination of theory and hacking

Advanced Compilers 6 Introduction

Use of Mathematical Abstraction

• Design of mathematical model & algorithm

• Generality, power, simplicity and efficiency

abstractionstatic statements
dynamic execution

graphs
matrices
integer programs

Mathematical
ModelPrograms

solutionsgenerated code

relations

Advanced Compilers 7 Introduction

Course Syllabus

1. Basic compiler optimizations

2. Pointer alias analysis

3. Parallelization and memory hierarchy optimizatio n

4. Garbage collection (run-time system)

Goal Eliminates redundancy in high-level language programs
Allocates registers
Schedules instructions (for instruction-level parallelism)

Scope Simple scalar variables, intraprocedural, flow-sensitive
Theory Data-flow analysis (graphs & solving fix-point equations)

Goal Used in program understanding,
concrete type inference in OO programs
(resolve target of method invocation, inline, and optimize)

Scope Pointers, interprocedural, flow-insensitive
Theory Relations, Binary decision diagrams (BDD)

Goal Parallelizes sequential programs (for multiprocessors)
Optimizes for the memory hierarchy

Scope Arrays, loops
Theory Linear algebra

Advanced Compilers 8 Introduction

Tentative Course Schedule

1 Course introduction
2 Basic compiler Data-flow analysis: introduction
3 Data-flow analysis: theoretic foundation
4 (joeq)
5 Optimization: constant propagation
6 Optimization: redundancy elimination
7 Register allocation
8 Scheduling: non-numerical code
9 Scheduling: software pipelining
10 Garbage collection Basic concepts
11 Optimizations
12 Pointer alias analysis Formulation
13 BDDs
14 Loop transformations Basic concepts
15 Parallelization and locality optimization
16 Summary

Advanced Compilers 9 Introduction

Course Emphasis

• Methodology: apply the methodology to other real l ife problems

• Problem statement
• Which problem to solve?

• Theory and Algorithm
• Theoretical frameworks
• Algorithms

• Experimentation: Hands-on experience

• Compiler knowledge:

• Non-goal: how to build a complete optimizing compiler
• Important algorithms
• Exposure to new ideas
• Background to learn existing techniques

Advanced Compilers 10 Introduction

Assignment by Monday, Sep. 14

• Think about how to build a compiler that converts the code on
page 11 to page 12
(Read Chapter 9.1 for introduction of the optimizat ions)

• Example:
Bubblesort program that sorts array A allocated in static storage

for (i = n-2; i >= 0; i--) {
for (j = 0; j <= i; j++) {

if (A[j] > A[j+1]) {
temp = A[j];
A[j] = A[j+1];
A[j+1] = temp;

}
}

}

Advanced Compilers 11 Introduction

Code Generated by the Front End

(t4=*t3 means read memory at address in t3 and write to t4:
 *t20=t17 :store value of t17 into memory at address in t20)

 i = n-2
S5:if i<0 goto s1
 j = 0

s4:if j>i goto s2
 t1 = 4*j
 t2 = &A
 t3 = t2+t1
 t4 = *t3 ;A[j]
 t5 = j+1
 t6 = 4*t5
 t7 = &A
 t8 = t7+t6
 t9 = *t8 ;A[j+1]
 if t4 <= t9 goto s3
 t10 = 4*j
 t11 = &A
 t12 = t11+t10
 temp = *t12 ;temp=A[j]

 t13 = j+1
 t14 = 4*t13
 t15 = &A
 t16 = t15+t14
 t17 = *t16 ;A[j+1]
 t18 = 4*j
 t19 = &A
 t20 = t19+t18 ;&A[j]
*t20 = t17 ;A[j]=A[j+1]
 t21 = j+1
 t22 = 4*t21
 t23 = &A
 t24 = t23+t22
*t24 = temp ;A[j+1]=temp

s3:j = j+1
 goto S4

S2:i = i-1
 goto s5

s1:

Advanced Compilers 12 Introduction

After Optimization

 i = n-2
 t27 = 4*i
 t28 = &A
 t29 = t27+t28
 t30 = t28+4

S5:if t29 < t28 goto s1
 t25 = t28
 t26 = t30

s4:if t25 > t29 goto s2
 t4 = *t25 ;A[j]
 t9 = *t26 ;A[j+1]
 if t4 <= t9 goto s3
 temp = *t25 ;temp=A[j]
 t17 = *t26 ;A[j+1]
 *t25 = t17 ;A[j]=A[j+1]
 *t26 = temp ;A[j+1]=temp

s3:t25 = t25+4
 t26 = t26+4
 goto S4

S2:t29 = t29-4
 goto s5

s1:

Result of applying
global common subexpression
loop invariant code motion
induction variable elimination
dead-code elimination

to all the scalar and temp. variables

These traditional optimizations can
make a big difference!

