Lecture 1

Introduction to CS243

I Why Study Compilers?

Il Course Syllabus

Chapters 1.1-1.5, 8.4, 8.5,9.1

Advanced Compilers M.Lam

I. Why Study Compilers?

Advanced Compilers 2 Introduction

Reasons for Studying Compilers

» Compilers are important

» An essential programming tool
» Improves software productivity by hiding low-level details

» A tool for designing and evaluating computer architectures
¢ Inspired RISC, VLIW machines
¢ Machines’ performance measured on compiled code

» Techniques for developing other programming tools
« Examples: error detection tools

« Little languages and program translations
can be used to solve other problems

e Compilers have impact: affect all programs

Advanced Compilers 3 Introduction

Compiler Study Trains Good Developers

Excellent software engineering case study

¢ Optimizing compilers are hard to build
 Input: all programs
» Obijectives:

« Methodology for solving complex real-life problems
» Key to success: Formulate the right approximation!
« Desired solutions are often NP-complete / undecidable
» Where theory meets practice

e Can't be solved by just pure hacking
-- theory aids generality and correctness

« Can't be solved by just theory
-- experimentation validates and provides feedback to
problem formulation

« Reasoning about programs, reliability & security
makes you a better programmer

There are programmers, and there are tool builders ...

Advanced Compilers 4 Introduction

Example

» Tools for web application security vulnerabilities

¢ PQL: a general language for describing information flow of
interest

« Static techniques to locate errors automatically

¢ |llustrates:

Advanced Compilers

Exciting research area!

Importance of programming tools
Sophistication of static analysis techniques
What static analysis looks like

Use of little languages

Combination of theory and hacking

Use of Mathematical Abstraction

Introduction

— Programs — - Model N\
. ; raphs
static statements * abstraction | r%atrr)ices
dynamic executio integer programs
relations
generated code @ solutions
N J . J

Mathematical

» Design of mathematical model & algorithm

» Generality, power, simplicity and efficiency

Advanced Compilers

Introduction

Course Syllabus

1. Basic compiler optimizations

Goal |Eliminates redundancy in high-level language programs
Allocates registers
Schedules instructions (for instruction-level parallelism)

Scope | Simple scalar variables, intraprocedural, flow-sensitive
Theory | Data-flow analysis (graphs & solving fix-point equations)

2. Pointer alias analysis

Goal |Used in program understanding,
concrete type inference in OO programs
(resolve target of method invocation, inline, and optimize)

Scope | Pointers, interprocedural, flow-insensitive
Theory | Relations, Binary decision diagrams (BDD)

3. Parallelization and memory hierarchy optimizatio n

Goal |Parallelizes sequential programs (for multiprocessors)
Optimizes for the memory hierarchy

Scope | Arrays, loops
Theory | Linear algebra

4. Garbage collection (run-time system)

Advanced Compilers 7 Introduction

Tentative Course Schedule

1 | Course introduction

2 | Basic compiler Data-flow analysis: introduction

3 Data-flow analysis: theoretic foundation
4 (joeq)

5 Optimization: constant propagation

6 Optimization: redundancy elimination
7 Register allocation

8 Scheduling: non-numerical code

9 Scheduling: software pipelining

10 | Garbage collection Basic concepts

11 Optimizations

12 | Pointer alias analysis Formulation

13 BDDs

14 | Loop transformations Basic concepts

15 Parallelization and locality optimization
16 | Summary

Advanced Compilers 8 Introduction

Course Emphasis

» Methodology: apply the methodology to other real | ife problems

* Problem statement
* Which problem to solve?
» Theory and Algorithm
» Theoretical frameworks
« Algorithms
» Experimentation: Hands-on experience

» Compiler knowledge:

» Non-goal: how to build a complete optimizing compiler
* Important algorithms

» Exposure to new ideas

» Background to learn existing techniques

Advanced Compilers 9 Introduction

Assignment by Monday, Sep. 14

¢ Think about how to build a compiler that converts the code on
page 11 to page 12
(Read Chapter 9.1 for introduction of the optimizat ions)

e Example:
Bubblesort program that sorts array A allocated in static storage
for (i =n-2;, i >=0; i--) {
for (j =0; j <=1i; j++) {
it (ALj] > Alj+1]) |
temp = A[j];
Aljl = Alj+1];
Alj+1] = tenp;
}
}
}

Advanced Compilers 10 Introduction

Code Generated by the Front End

i =n-2 t13 = j+1
S5:if i<0 goto sl t1l4 = 4*t13
j =0 t15 = &A
s4:if j>i goto s2 t16 = t15+t14
tl = 4%j t17 = *t16 CALj +1]
t2 = &A t18 = 4%
t3 = t2+t1 t19 = &A
t4 = *t3 VAL] t20 = t19+t18 ; &A[j]
t5 = j+1 *t20 = t17 CAL)] =AL) +1]
t6 = 4*t5 t21 = j+1
t7 = &A t22 = 4*t21
t8 = t7+t6 t23 = &A
t9 = *t8 ALj +1] t24 = t23+t22
if t4 <=t9 goto s3 *t24 = tenp ;A +1] =tenp
t10 = 4*]j s3:j = j+1
t1l = &A goto S4
t12 = t11+t 10 S2:i =i-1
tenp = *t12 ;temp=A[j] goto s5
sl:

(t4=*t3 nmeans read nenory at address in t3 and wite to t4:
*t20=t 17 :store value of t17 into nenory at address in t20)

Advanced Colipniais

«ntroduction

After Optimization

i =n-2
t27 = 4*%i
. t28 = &A
Result of applying t29 = t 27+t 28
global common subexpression t30 = t28+4
loop invariant code motion S5:if 129 < 128 goto sl
inducti iable elimination t25 =128
induction varia t26 = 30
dead-code elimination s4:if t25 > t29 goto s2
to all the scalar and temp. variables ~ t4 = *t25 [A[j]
t9 = *t26 DAL +1]
if t4 <= t9 goto s3
tenmp = *t25 ;tenp=A[j]
t17 = *t26 ;Alj+1]
These traditional optimizations can ::gg B :i:rp 2[[:]&?[—{ ;rlr]p
make a big difference! S3:125 = {2544
t26 = t26+4
goto $4
S2:t29 = 129-4
goto s5

Advanced Compilers

sl:

Introduction

