joeq Compiler System

Oren Kerem
CS 243

————
Plan for Today

Joeq System Overview

Lifecycle of Analyzed Code
Source Code Representation
Writing and Running a Pass

Assignment: Datatlow Framework

—!

Background on joeq

0O A compiler system for analyzing Java code
Developed by John Whaley and others
Used on a daily basis by the SUIF compiler group

An 1nfrastructure for many research projects: 10+
papers rely on joeq implementations

O Visit http://joeq.sourceforge.net for more

O Orread
http://www.stanford.edu/~jwhaley/papers/ivme03.pdf

————
joeq Design Choices

Most of the system 1s implemented in pure Java

Thus, analysis framework and bytecode processors work
everywhere

We treat joeq as a front-end and middle-end

But it can be used as a VM as well

m System-specific code is patched in when the joeq system compiles
itself or its own runtime

m These are ordinary C routines

m Systems supported by full version: Linux and Windows under x86

joeq Components

O Full system is very large: O Synchronization
~100,000 lines of code O Assembler

O Allocator O Class Library

O Bootstrapper O Compiler (Bytecode)

O Classfile structure O Debugger

O Compiler (Quad) O Bytecode Interpreters

O Garbage Collector o Linkers

O Quad Interpreters O Reflection support

O Memory Access O Scheduling

O Safe/Unsafe barriers O UTF-8 Support

We restrict ourselves to only the compiler and classfile routines,
which 1s closer to 40,000 lines of code

Starting at the Source

————————————
Lifecycle of Analyzed Code

O Everything begins as source code
O A very “rich” representation

» Good for reading

» Hard to analyze

O Lots of high-level concepts here with (probably) no
counterparts in the hardware

Virtual function calls

Direct use of monitors and condition variables

Exceptions

Reflection

Anonymous classes
Threads

Source to Bytecode

O javac or jikes compiles source into a machine-independent
bytecode format

O Coarse structure of the program is still maintained
»m Each class is a file
» Split up into methods and fields

» The bytecodes themselves are stored as a member
attribute 1n methods that have them

= Bytecode instructions are themselves high level:
O 1invokevirtual
O monitorenter
O arraylength

Analysis and Source Code

O No need to bother with source code, since structure is
maintained in classfile format

O Moreover, bytecode 1s indifferent to language changes
O Reading in code:
1. joeq finds and loads requested files through the classpath

2. Each source component in the classfile has a corresponding object:
0o jq_Class
0O jg_Method
O eftc.

O Method bodies are transformed from bytecode arrays to more
convenient representation

How Source Code 1s
Represented Within joeq

Source Code Representation

O joeq 1s designed primarily to work with Java
Operates at all levels of abstraction
Has classes corresponding to each language
component

O Relevant packages in joeq

joeq.Class package: classes that represent Java
source components (classes, fields, methods, etc.)

joeq.Compiler.Bytecode Analysis package: analysis
of Java bytecode

joeq.Compiler.Quad package: Classes relevant to
joeq's internal “quad” format
O Be careful with your imports

avoid name conflicts with java.lang.Class and
java.lang.Compiler

Types/Classes

|

Fields/Methods

Basic blocks

]
LA

Instructions

!

————
joeq.Class: Types and Classes

0O jq_Type: corresponds to any Java type

O jq_Primitive: static elements representing
primitive types

O jg_Array: multidimensional arrays that have a
component type, which itself 1s a jq_Array

0 jq_Class: a defined class

—!

joeq.Class: Fields and Methods
0O Subclasses of jq_Field and jg_Method

Class hierarchy distinguishes between instance
and class (static) members, but this detail 1s
generally hidden from higher analyses

O Access to the types hierarchy: declaring types,
parameter/return types, etc.

0O Names are stored as UTF.Utf8 objects, so
convert with toString() to make use of them

—!
Analyzing Bytecode

0 The Java Virtual Machine stores program
code as bytecodes that serve as instructions to
a stack machine of sorts

0 Raw material for all analysis of Java code

0O Preserves vast amounts of source information:

De-compilers can reconstruct source almost
perfectly, down to variable names and line
numbers

————
Example of Java Bytecode

class ExprTest { int test (int);
int test (int a) { Code:
. 0: iload 1
int b, ¢, 4, e, f;

bipush 10
c = a + 10; 3: iadd
f =a + c; 4: istore_3
5: iload 1
. 6 iload 3
if(f > 2){ ; iadd
f=1f-c¢ 8: istore 6
} 10: iload 6
12: iconst_2
return £; 13: :?.f_icmple 22
16: iload 6
} 18: iload_3
} 19: isub
20: istore 6
O javac test.java 22: iload 6

O javap -c ExprTest 24: ireturn

————————————
Bytecode Details

O The implied running model of the Java Virtual Machine is a stack
machine

» Local variables correspond to registers
m Computation occurs on a stack
This 1s hard to analyze!

Fortunately, the JVM requires that bytecode pass strict type-checking and
stack consistency checking

O Gosling Property: At each instruction, the types of every element on the
stack, and every local variable, are all well defined

O By extension, the stack must have a specific height at each program point

Converting Bytecodes to Quads

O joeq converts bytecodes to four-address code, called "Quads"

O The highly abstract bytecode instructions have Quad
counterparts

O One operator, up to four operands
OPERATOR OP1 OP2 OP3 OP4
O Approximately 100 operators and 15 varieties of operands

O Details on the quads and relevant methods are on the course
website's joeq documentation:

» http://suif.stanford.edu/~courses/cs243/joeq/index.html

Operators

O Types of operators
» Primitive operations: Moves, Adds, Bitwise AND, etc.
» Memory access: Getfields and Getstatic
m Control flow: Compares and conditional jumps, JSRs
m Method invocation: OO and traditional

O Operators have suffixes indicating return type:
» ADD_I adds two integers

= L,F,D,A,andYV refer to longs, floats, doubles, references, and voids
respectively

m Operators may have _DYNLINK (or %) appended, which means that
a new class may need to be loaded

————————
Operands

0 Operands are split into 15 types

m The ConstOperand classes (I, F, A, etc.) indicate
constant values of the relevant type

m RegisterOperands name pseudo-registers

» MethodOperands and ParamListOperands are
used to 1dentify method targets

m TypeOperands are passed to type-checking
operators, or to 'new" operators

m TargetOperands indicate the target of a branch

————————————
Converting a Method to Quads

BB0 (ENTRY) (in: <none>, out: BB2)

BB2 (in: BBO (ENTRY), out: BB3, BB4)
1 ADD_I TO int, R1 int, IConst: 10
2 MOVE_1I R3 int, TO int

3 ADD I TO int, R1 int, R3 int

4 MOVE_1I R6 int, TO int

5 IFCMP_I R6 int, IConst: 2, LE, BB4
BB3 (in: BB2, out: BB4)

6 SUB_I TO int, R6 int, R3 int

7 MOVE_1I R6 int, TO int

BB4 (in: BB2, BB3, out: BBl (EXIT))

8 RETURN_T R6 int

BB1 (EXIT) (in: BB4, out: <none>)

Exception handlers: []
Register factory: Local: (I=7, F=7, L=7, D=7, A=7)
Stack: (I=2, F=2, L=2, D=2, A=2)

Control Flow and CFGs

0 joeq.Compiler.Quad.ControlFlowGraph
encapsulates most of the information we need

= Don’t confuse with the ControlFlowGraph in
joeq.Compiler.BytecodeAnalysis

0 Generated from jq_Methods by the underlying
system's machinery

e
Basic Blocks

Raw components of Control Flow Graphs

Linked to predecessors and successors
Contain a list of Quads

O O O 0O

And 1nformation about exception handlers

= Which ones protect this basic block

» Which blocks this one protects

O Exceptions violate traditional BB semantics

= An exception can jump out of the middle of a basic block
» We will ignore this subtlety

—!
Satety Checks

O Java's safety checks are implicit: instructions
may throw exceptions

O Joeq's safety checks are explicit: values of

arguments are tested by operators such as
NullCheck and BoundsCheck

Exceptions are thrown 1f checks fail

O When converting from bytecodes to quads, all
necessary checks are automatically inserted

—!

Iterating Over the Quads: QuadlIterator

O Dealing with control flow graphs or basic blocks directly 1s

tedious

O Dealing with individual quads tends to miss the forest for the
trees

O Simple interface to iterate through all the quads in reverse
post-order

O Predecessors and successors are still accessible

jg Method m = ...
ControlFlowGraph cfg = CodeCache.getCode (m);
QuadIterator iter = new QuadIterator (cfgqg)
while (iter.hasNext ()) {
Quad quad = (Quad)iter.next();
if (quad.getOperator () instanceof Operator.Invoke) {
processCall (cfg.getMethod (), quad);

}

Developing a joeq
Compiler Pass

Writing and Running a Pass

O Passes themselves are written in Java,
implementing various joeq interfaces

O Passes are invoked through library routines in
the joeq.Main.Helper class

————————
The joeq.Main.Helper Class

O joeq.Main.Helper provides a clean interface to
the complexities of the joeq system

0O load(String) takes the name of a class
provides the corresponding jq_Class

O runPass(target, pass) lets you apply any pass
to a target that's at least that big

Visitors 1n joeq

O joeq uses of the visitor design pattern

O The visitor for a level of the code hierarchy has methods
visitFoo(code object) for each type of object in that level

O For some cases, types may overlap (e.g., visitStore and
visitQuad) — the methods will be called from least-general to
most-general (1.e., visitStore before visitQuad)

O Visitor interfaces with more than one method have internal
abstract classes called “EmptyVisitor* to simplify
implementation

Visitors: Some Examples

public class QuadCounter extends QuadVisitor.EmptyVisitor
{

public int count = 0;
public void wvisitQuad (Quad q) {

count++;

public class LoadStoreCounter extends
QuadVisitor.EmptyVisitor {

public int loadCount = 0, storeCount = O;
public void visitLoad(Quad q) { loadCount++;}
public void visitStore (Quad q) { storeCount++;}

Running a Pass

public class RunQuadCounter {
public static void main (String[] args) {
jgq Class[] ¢ = new jq Class[args.length];
for(int 1 = 0; i < args.length; i++) {
c[i] = Helper.load(args[il]);
}
QuadCounter gqc = new QuadCounter();
for(int 1 = 0; i < args.length; i++) {
gc.count = O0;
Helper.runPass (c[i], gc);
System.out.println(
c[i] .getName () + “ has “ +
gc.count + “ Quads.”);

Summary

We're using the joeq compiler system

Review of Java VM's code hierarchy

Review of joeq's code hierarchy

joeq.Main.Helper

[

[

[

O Quadlterators
u

O Visitor pattern
[

Defining and running passes

—!

Programming Assignment 1

O Implement a basic data flow framework
0 We provide the interfaces for your framework

0O Write the iterative Solver algorithm for any
analysis matching these interfaces

0O Phrase Reaching Definitions in terms that any
Solver can understand

—!

Programming Assignment 1

O Sample analyses are available in
/usr/class/cs243/dataflow

0 Flow.java contains the interfaces and the
main() method

0 ConstantProp.java contains classes that define
a limited constant propagation algorithm

O Liveness.java contains classes that define a
liveness detection algorithm

—!

Programming Environment

O joeq.jar 1s provided
O We recommend you develop on Eclipse

O Your output must match ours on the publicly
accessible Stanford Linux clusters

O Sample test case and matching output 1s
provided

0 The maketile will simplity your life

————
The LivePC Engine

O Import a complete Eclipse development
platform, including joeq (~800MB)

O Go to www.moka5.com and download the
LivePC Engine

O After installation, fetch the Java Program
Analysis Toolset library

O (Your TAs are not proficient LivePC users)

