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Background on joeq

0O A compiler system for analyzing Java code
Developed by John Whaley and others
Used on a daily basis by the SUIF compiler group

An 1nfrastructure for many research projects: 10+
papers rely on joeq implementations

O Visit http://joeq.sourceforge.net for more

O Orread
http://www.stanford.edu/~jwhaley/papers/ivme03.pdf
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joeq Design Choices

Most of the system 1s implemented in pure Java

Thus, analysis framework and bytecode processors work
everywhere

We treat joeq as a front-end and middle-end

But it can be used as a VM as well

m  System-specific code is patched in when the joeq system compiles
itself or its own runtime

m These are ordinary C routines

m  Systems supported by full version: Linux and Windows under x86



joeq Components

O  Full system is very large: O Synchronization
~100,000 lines of code O Assembler

O Allocator O Class Library

O  Bootstrapper O Compiler (Bytecode)

O Classfile structure O Debugger

O Compiler (Quad) O Bytecode Interpreters

O Garbage Collector o Linkers

O  Quad Interpreters O Reflection support

O Memory Access O  Scheduling

O Safe/Unsafe barriers O UTF-8 Support

We restrict ourselves to only the compiler and classfile routines,
which 1s closer to 40,000 lines of code



Starting at the Source
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Lifecycle of Analyzed Code

O Everything begins as source code
O A very “rich” representation

»  Good for reading

» Hard to analyze

O Lots of high-level concepts here with (probably) no
counterparts in the hardware

Virtual function calls

Direct use of monitors and condition variables

Exceptions

Reflection

Anonymous classes
Threads



Source to Bytecode

O javac or jikes compiles source into a machine-independent
bytecode format

O Coarse structure of the program is still maintained
»m Each class is a file
»  Split up into methods and fields

» The bytecodes themselves are stored as a member
attribute 1n methods that have them

= Bytecode instructions are themselves high level:
O 1invokevirtual
O monitorenter
O arraylength



Analysis and Source Code

O No need to bother with source code, since structure is
maintained in classfile format

O Moreover, bytecode 1s indifferent to language changes
O Reading in code:
1. joeq finds and loads requested files through the classpath

2. Each source component in the classfile has a corresponding object:
0o jq_Class
0O jg_Method
O eftc.

O Method bodies are transformed from bytecode arrays to more
convenient representation



How Source Code 1s
Represented Within joeq




Source Code Representation

O joeq 1s designed primarily to work with Java
Operates at all levels of abstraction
Has classes corresponding to each language
component

O Relevant packages in joeq

joeq.Class package: classes that represent Java
source components (classes, fields, methods, etc.)

joeq.Compiler.Bytecode Analysis package: analysis
of Java bytecode

joeq.Compiler.Quad package: Classes relevant to
joeq's internal “quad” format
O Be careful with your imports

avoid name conflicts with java.lang.Class and
java.lang.Compiler

Types/Classes

|

Fields/Methods

Basic blocks

]
LA

Instructions

!
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joeq.Class: Types and Classes

0O jq_Type: corresponds to any Java type

O jq_Primitive: static elements representing
primitive types

O jg_Array: multidimensional arrays that have a
component type, which itself 1s a jq_Array

0 jq_Class: a defined class
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joeq.Class: Fields and Methods
0O Subclasses of jq_Field and jg_Method

Class hierarchy distinguishes between instance
and class (static) members, but this detail 1s
generally hidden from higher analyses

O Access to the types hierarchy: declaring types,
parameter/return types, etc.

0O Names are stored as UTF.Utf8 objects, so
convert with toString() to make use of them
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Analyzing Bytecode

0 The Java Virtual Machine stores program
code as bytecodes that serve as instructions to
a stack machine of sorts

0 Raw material for all analysis of Java code

0O Preserves vast amounts of source information:

De-compilers can reconstruct source almost
perfectly, down to variable names and line
numbers
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Example of Java Bytecode

class ExprTest { int test (int);
int test (int a) { Code:
. 0: iload 1
int b, ¢, 4, e, f;

bipush 10
c = a + 10; 3: iadd
f =a + c; 4: istore_3
5: iload 1
. 6 iload 3
if(f > 2){ ; iadd
f=1f-c¢ 8: istore 6
} 10: iload 6
12: iconst_2
return £; 13: :?.f_icmple 22
16: iload 6
} 18: iload_3
} 19: isub
20: istore 6
O  javac test.java 22: iload 6

O  javap -c ExprTest 24: ireturn
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Bytecode Details

O The implied running model of the Java Virtual Machine is a stack
machine

» Local variables correspond to registers
m  Computation occurs on a stack
This 1s hard to analyze!

Fortunately, the JVM requires that bytecode pass strict type-checking and
stack consistency checking

O Gosling Property: At each instruction, the types of every element on the
stack, and every local variable, are all well defined

O By extension, the stack must have a specific height at each program point



Converting Bytecodes to Quads

O joeq converts bytecodes to four-address code, called "Quads"

O The highly abstract bytecode instructions have Quad
counterparts

O One operator, up to four operands
OPERATOR OP1 OP2 OP3 OP4
O Approximately 100 operators and 15 varieties of operands

O Details on the quads and relevant methods are on the course
website's joeq documentation:

»  http://suif.stanford.edu/~courses/cs243/joeq/index.html



Operators

O Types of operators
» Primitive operations: Moves, Adds, Bitwise AND, etc.
» Memory access: Getfields and Getstatic
m  Control flow: Compares and conditional jumps, JSRs
m  Method invocation: OO and traditional

O Operators have suffixes indicating return type:
» ADD_I adds two integers

= L,F,D,A,andYV refer to longs, floats, doubles, references, and voids
respectively

m  Operators may have _DYNLINK (or %) appended, which means that
a new class may need to be loaded
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Operands

0 Operands are split into 15 types

m The ConstOperand classes (I, F, A, etc.) indicate
constant values of the relevant type

m RegisterOperands name pseudo-registers

» MethodOperands and ParamListOperands are
used to 1dentify method targets

m TypeOperands are passed to type-checking
operators, or to 'new" operators

m TargetOperands indicate the target of a branch
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Converting a Method to Quads

BB0 (ENTRY) (in: <none>, out: BB2)

BB2 (in: BBO (ENTRY), out: BB3, BB4)
1 ADD_I TO int, R1 int, IConst: 10
2 MOVE_1I R3 int, TO int

3 ADD I TO int, R1 int, R3 int

4 MOVE_1I R6 int, TO int

5 IFCMP_I R6 int, IConst: 2, LE, BB4
BB3 (in: BB2, out: BB4)

6 SUB_I TO int, R6 int, R3 int

7 MOVE_1I R6 int, TO int

BB4 (in: BB2, BB3, out: BBl (EXIT))

8 RETURN_T R6 int

BB1 (EXIT) (in: BB4, out: <none>)

Exception handlers: []
Register factory: Local: (I=7, F=7, L=7, D=7, A=7)
Stack: (I=2, F=2, L=2, D=2, A=2)



Control Flow and CFGs

0 joeq.Compiler.Quad.ControlFlowGraph
encapsulates most of the information we need

= Don’t confuse with the ControlFlowGraph in
joeq.Compiler.BytecodeAnalysis

0 Generated from jq_Methods by the underlying
system's machinery
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Basic Blocks

Raw components of Control Flow Graphs

Linked to predecessors and successors
Contain a list of Quads

O O O 0O

And 1nformation about exception handlers

= Which ones protect this basic block

» Which blocks this one protects

O Exceptions violate traditional BB semantics

= An exception can jump out of the middle of a basic block
»  We will ignore this subtlety
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Satety Checks

O Java's safety checks are implicit: instructions
may throw exceptions

O Joeq's safety checks are explicit: values of

arguments are tested by operators such as
NullCheck and BoundsCheck

Exceptions are thrown 1f checks fail

O When converting from bytecodes to quads, all
necessary checks are automatically inserted
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Iterating Over the Quads: QuadlIterator

O Dealing with control flow graphs or basic blocks directly 1s

tedious

O Dealing with individual quads tends to miss the forest for the
trees

O Simple interface to iterate through all the quads in reverse
post-order

O Predecessors and successors are still accessible

jg Method m = ...
ControlFlowGraph cfg = CodeCache.getCode (m);
QuadIterator iter = new QuadIterator (cfgqg)
while (iter.hasNext ()) {
Quad quad = (Quad)iter.next();
if (quad.getOperator () instanceof Operator.Invoke) {
processCall (cfg.getMethod (), quad);

}



Developing a joeq
Compiler Pass




Writing and Running a Pass

O Passes themselves are written in Java,
implementing various joeq interfaces

O Passes are invoked through library routines in
the joeq.Main.Helper class
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The joeq.Main.Helper Class

O joeq.Main.Helper provides a clean interface to
the complexities of the joeq system

0O load(String) takes the name of a class
provides the corresponding jq_Class

O runPass(target, pass) lets you apply any pass
to a target that's at least that big



Visitors 1n joeq

O joeq uses of the visitor design pattern

O The visitor for a level of the code hierarchy has methods
visitFoo(code object) for each type of object in that level

O For some cases, types may overlap (e.g., visitStore and
visitQuad) — the methods will be called from least-general to
most-general (1.e., visitStore before visitQuad)

O Visitor interfaces with more than one method have internal
abstract classes called “EmptyVisitor* to simplify
implementation



Visitors: Some Examples

public class QuadCounter extends QuadVisitor.EmptyVisitor
{

public int count = 0;
public void wvisitQuad (Quad q) {

count++;

public class LoadStoreCounter extends
QuadVisitor.EmptyVisitor {

public int loadCount = 0, storeCount = O;
public void visitLoad(Quad q) { loadCount++;}
public void visitStore (Quad q) { storeCount++;}



Running a Pass

public class RunQuadCounter {
public static void main (String[] args) {
jgq Class[] ¢ = new jq Class[args.length];
for(int 1 = 0; i < args.length; i++) {
c[i] = Helper.load(args[il]);
}
QuadCounter gqc = new QuadCounter();
for(int 1 = 0; i < args.length; i++) {
gc.count = O0;
Helper.runPass (c[i], gc);
System.out.println(
c[i] .getName () + “ has “ +
gc.count + “ Quads.”);



Summary

We're using the joeq compiler system

Review of Java VM's code hierarchy

Review of joeq's code hierarchy

joeq.Main.Helper

[

[

[

O Quadlterators
u

O Visitor pattern
[

Defining and running passes



—!

Programming Assignment 1

O Implement a basic data flow framework
0 We provide the interfaces for your framework

0O Write the iterative Solver algorithm for any
analysis matching these interfaces

0O Phrase Reaching Definitions in terms that any
Solver can understand
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Programming Assignment 1

O Sample analyses are available in
/usr/class/cs243/dataflow

0 Flow.java contains the interfaces and the
main() method

0 ConstantProp.java contains classes that define
a limited constant propagation algorithm

O Liveness.java contains classes that define a
liveness detection algorithm
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Programming Environment

O joeq.jar 1s provided
O We recommend you develop on Eclipse

O Your output must match ours on the publicly
accessible Stanford Linux clusters

O Sample test case and matching output 1s
provided

0 The maketile will simplity your life
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The LivePC Engine

O Import a complete Eclipse development
platform, including joeq (~800MB)

O Go to www.moka5.com and download the
LivePC Engine

O After installation, fetch the Java Program
Analysis Toolset library

O (Your TAs are not proficient LivePC users)



