
Runtime storage management

Most block-structured languages require manipulation of runtime structures to main-
tain efficient access to appropriate data and machine resources. For our purposes,
a procedure is either a named function or an inline (parameterless) block.

Let’s examine the activity normally as-
sociated with invoking a procedure :

1. Some machine state might be
saved: general registers, vector
registers, condition codes, interrupt
masks, etc.

2. Access must be established to
’s local variables and compiler-

generated temporaries.

3. Access must be established to outer
scope variables (but not for C).

4. The caller of must be recorded so
that can return when done.

5. Parameters might be received prior
to executing .

6. A return value might be prepared
prior to returning from .

Each procedure invocation causes cre-
ation of an activation record or frame to
hold such runtime information.

State
Local x
Local y

...
Dynamic Link
Static Link
Parameters
Return Value

It’s convenient to have each local oc-
cupy a fixed amount of storage in the
frame. Therefore, arrays and other large
objects are often indirectly accessed
from a procedure’s frame, with the ac-
tual storage allocated on stack after the
frame.

Copyright c 1994 Ron K. Cytron. All rights reserved – 110– SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL



A simple runtime storage layout

Exec. Data

Stack

Heap

Code

Data

Since there are two dynamically grow-
ing areas, a simple scheme is to place
these at opposite ends of the address
space.

Following the contour of procedure en-
try and exit, activation records are
usually allocated on a stack. Where
languages allow suspension and re-
sumption of procedures (e.g., via con-
tinuations), then frames are garbage-
collected from the heap when dead.

The stack can also be used for perform-
ing intermediate computations.

The heap is generally managed by some form of explicit or implicit garbage
collection [4].

Copyright c 1994 Ron K. Cytron. All rights reserved – 111– SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL



Access to nonlocals

Static Links

current

next outer

next outer

At procedure entry, a link is inserted in
the frame to a procedure’s next outer
scope, whose frame is linked to its outer
scope, and so on. The static link is
deallocated along with the frame.

Establishing the link is fast, but access-
ing the th enclosing scope requires
indirections using static links. However,
a good register allocator would cache
these in the procedure’s registers.

Displays

depth 0

depth 1

current depth

A display is an array of frame pointers.
At procedure entry, the display is ad-
justed so that the frame at static depth
is accessed via entry of the display.

The display must be reset at procedure
return.

Maintaining the display takes more time
than with static links, but access to outer
scopes is faster once the display is es-
tablished.

Most programs make almost exclusive use of local and outermost scopes, with scant
use of intermediate scopes. This is especially true in C, where the language offers no
access to intermediate scopes except by explicit pointers.

Copyright c 1994 Ron K. Cytron. All rights reserved – 112– SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL


