
A Proof of Kleene’s Theorem

Rance Cleaveland

Spring 2000

1. Introduction

So far in class, we have concentrated on two classes of languages: the regular languages, which are

those that may be defined using regular expressions, and the FA languages, which are those that

are accepted by finite automata. Kleene’s Theorem states that, in fact, these classes are the same:

every regular language may be recognized by some FA, and every FA language may be represented

using a regular expression. The book presents one proof of these statements; this handout offers

an alternative, and I hope simpler, argument for the former.

On the basis of what we have seen in class, to establish that every regular language can be

recognized by an FA it suffices to show how, given a regular expression r, we can build a NFA M

such that L(r) = L(M). We give such a construction in a couple of steps.

1. We first define a predicate
√

on regular expressions; intuitively, r
√

is intended to hold if

ε ∈ L(r).

2. We then define a ternary relation −→⊆ R (Σ)×Σ×R (Σ). Intuitively, r
a−→ r′ is true if the

start state for a NFA for r can have an a-transition to the start state for a NFA for r′. Put

differently, if r
a−→ r′ then a NFA for r should be able to “process” symbol a and then accept

all the strings in L(r′).

3. Using these relations, we then show how to build a NFA from r whose states are regular

expressions, whose transitions are given by −→, and whose final states are defined using
√

.

2. Formal Definitions

We define
√

recursively using the following rules.

Definition 2.1. Let Σ be an alphabet. Then r
√

, where r ∈ R (Σ), is defined as follows.

• ε
√

.

• r∗
√

.

1

• If r
√

then (r+ s)
√

and (s+ r)
√

.

• If r
√

and s
√

then (rs)
√

.

Intuitively, r
√

holds if r is capable of “generating” the empty word, i.e. if ε ∈ L(r). Certainly

ε ∈ L(ε), and ε ∈ L(r∗) regardless of what r is. The definition of L(r+ s) ensures that ε is in the

language of r+ s if and only if it is in the language of r or s, while in the case of rs ε must be in

the language of both. As examples, we have the following.

εa∗
√

since ε
√

and a∗
√

.

¬((a+b)
√
) since neither a

√
nor b

√
.

01+(1+01)∗
√

since (1+01)∗
√

.

¬(01(1+01)∗
√
) since ¬(01

√
).

We also use recursion to define −→.

Definition 2.2. Let Σ be an alphabet. Then for r,r′ ∈R (Σ) and a∈Σ,r
a−→ r′ is defined as follows.

• If a ∈ Σ then a
a−→ ε.

• If r
a−→ r′ then r+ s

a−→ r′.

• If s
a−→ s′ then r+ s

a−→ s′.

• If r
a−→ r′ then rs

a−→ r′s.

• If r
√

and s
a−→ s′ then rs

a−→ s′.

• If r
a−→ r′ then r∗ a−→ r′(r∗).

The definition of this relation is somewhat complex, but the idea that it is trying to capture is rela-

tively simple: r
a−→ r′ if one can build words in L(r) by taking the a labeling −→ and appending

a word from L(r′). So we have the rule a
a−→ ε for a ∈ Σ, while the rules for + follow from the

fact that L(r+ s) = L(r)∪L(s). The rules for rs in essence state that ax ∈ L(rs) can hold either if

there is a way of splitting x into x1,x2 such that ax1 is in the language of r and x2 is in the language

of s or if ε is in the language of r and ax is in the language of s. Finally, the rule for r∗ essentially

permits such regular expressions to “loop”. As examples, we have the following.

0+1
0−→ ε by the rules for 0 and +.

(abb+a)∗
a−→ εbb(abb+a)∗ by the rules for a, concatenation, +, and ∗.

In this latter example, note that applying the rules literally requires that we include the ε in

εbb(abb+ a)∗. This is because the rule for a says that a
a−→ ε, meaning that abb

a−→ εbb, etc.

However, when we have εs like this, we will often leave them out; thus we will write abb
a−→ bb

rather than abb
a−→ εbb.

The following lemmas about
√

and −→ formally establish the intuitive properties that we wish

them to have.

2

Lemma 2.3. Let r be a regular expression. Then r
√

if and only if ε ∈ L(r).

Lemma 2.4. Let r ∈ R (Σ) be a regular expression over Σ, a ∈ Σ, and x ∈ Σ∗. Then ax ∈ L(r) if

and only if there is an r′ ∈ R (Σ) such that r
a−→ r′ and x ∈ L(r′).

Both lemmas may be proved using strong induction on the size of regular expression r.

3. Building Automata using
√

and −→

To see how
√

and −→ may be used to build NFAs, first note how we can use them to determine

whether a string is in the language of a regular expression. Consider the following sequence of

“transitions” starting from the regular expression (abb+a)∗.

(abb+a)∗ a−→ bb(abb+a)∗ b−→ b(abb+a)∗ b−→ (abb+a)∗ a−→ (abb+a)∗

Using Lemma 2.4 (four times!), we can conclude that if x ∈ L((abb+a)∗), then abbax∈ L((abb+
a)∗) also. In addition, since (abb+a)∗

√
, we know from Lemma 2.3 that ε ∈ L((abb+a)∗). Since

abbaε = abba, then, it follows that abba ∈ L((abb+a)∗).
More generally, if there is a sequence of transitions r0

a1−→ r1···
an−→ rn and rn

√
, then we can

assert that a1...an ∈L(r0), and vice versa. This observation suggests the following possible strategy

for building a NFA from a regular expression r.

1. Let the states be all possible regular expressions that can be reached by some sequence of

−→-transitions from r.

2. Take r to be the start state.

3. Let the transitions be given by −→.

4. Let the accepting states be those regular expressions r′ for which r′
√

holds.

Of course, this would only work if the set of “all possible regular expressions” mentioned in part 1

is finite, since a NFA is required to have a finite number of states.

To make this construction precise, and to examine the issue of “finiteness” of state sets, we

need to define mathematically the set of “all possible regular expressions that can be reached by

some sequence”. We can do this as follows.

Definition 3.5. Let r ∈ R (Σ) be a regular expression. Then the set RS(r) ⊆ R (Σ) is defined

recursively as follows.

• r ∈ RS(r).

• If r1 ∈ RS(r) and r1
a−→ r2 for some a ∈ Σ, then r2 ∈ RS(r).

The RS stands for “reachability set.” As an example, note that

RS((abb+a)∗) = {(abb+a)∗,bb(abb+a)∗,b(abb+a)∗}.

The following result indicates that the number of reachable regular expressions is always finite.

3

Lemma 3.6. Let r be a regular expression. Then RS(r) is finite.

Proof. Follows from observations such as

• RS(r1+ r2) = RS(r1)∪RS(r2) and

• RS(r∗) = {r′r∗ | r′ ∈ RS(r)}.

✷

We can now define our NFA construction as follows.

Definition 3.7. Let r ∈ R (Σ) be a regular expression. Then NFA(r) = 〈Q,Σ,q0,δ,A〉 is the NFA

defined as follows.

• Q = RS(r).

• q0 = r.

• δ(r1,a) = {r2 ∈ Q | r1
a−→ r2 }.

• A = {r′ ∈ Q | r′
√}.

The next theorem establishes that r and NFA(r) always have the same languages.

Theorem 3.8. Let r be a regular expression. The L(r) = L(NFA(r)).

Proof. Relies on the fact that Lemmas 2.3 and 2.4 guarantee that x = a1...an ∈ L(r) if and only if

there is a regular expression r′ such that r
a1−→ ··· an−→ r′ and r′

√
. ✷

4. How to Compute NFA(r)

It may not be apparent from the discussion up to now, but in fact the construction for NFA(r) given

above can be automated; that is, one can come up with a routine for building NFA(r), given r.

Before describing how this may be done, we first make precise the notion of “outgoing transitions”

from a regular expression and explain how they may be calculated.

Definition 4.9. Let r ∈ R (Σ) be a regular expression. Then the set of outgoing transitions from r

is defined as the set {〈a,r′〉 | r
a−→ r′ }.

Intuitively, the outgoing transitions from r consists of pairs 〈a,r′〉 that, when combined with r,

constitute a valid “transition” r
a−→ r′. Figure 1 contains a recursive procedure computing for

outgoing transitions. The routine, out, uses the structure of r and the rules that define −→ to

guide its computation. For regular expressions of the form /0,ε and a ∈ Σ, the definition of −→
immediately gives all the transitions. For regular expressions built using +, · and ∗, one must

first recursively compute the outgoing transitions of the subexpressions of r and then combine the

results appropriately, based on the rules given in the definition of −→.

The next lemma states that out correctly computes of outgoing transitions.

4



out(r) =































{ } if r = /0 or r = ε

{〈a,ε〉} if r = a ∈ Σ

out(r1)∪out(r2) if r = r1 + r2

{〈a,r′1r2〉 | 〈a,r′1〉 ∈ out(r1)}
∪{〈a,r′2〉 | 〈a,r′2〉 ∈ out(r2)∧ r1

√} if r = r1r2

{〈a,r′1r∗1〉 | 〈a,r′1〉 ∈ out(r1)} if r = r∗1

Figure 1: Calculating the outgoing transitions of regular expressions.

Lemma 4.10. Let r ∈ R (Σ) be a regular expression, and let out be as defined in Figure 1. Then

out(r) = {〈a,r′〉 | r
a−→ r′ }.

Proof. The proof breaks into two pieces. The first requires us to show that every 〈a,r′〉 ∈ out(r)

satisfies: r
a−→ r′. In the second, we establish that whenever r

a−→ r′, then 〈a,r′〉 ∈ out(r). Both

arguments can be carried out using induction, with the first being done on the structure of the

definition of out and the second using the definition of −→.

✷

We now sketch a routine for computing NFA(r); it relies on maintaining three sets of regular

expressions.

• Q, a set that will eventually contain the states of NFA(r).

• A, a set that will eventually contain the accepting states of NFA(r).

• toProc, a subset of Q containing states that have not yet had their transitions computed and

thus require some “processing”.

The algorithm works as follows. Initially, Q and toProc contain only r. While there remains

at least one regular expression to process, we remove one such an expression from toProc and

perform the following. First, we check to see if
√

holds for the expression; if so then we add the

expression to the set of accepting states. Then we compute all the “outgoing transitions” from the

given expression; the target expressions of these transitions that are not already in Q are added both

to Q and to toProc, as they have not yet been encountered and thus need their transitions computed.

The algorithm terminates when toProc is empty. Pseudocode for this procedure may be found in

Figure 2, while Figure 3 gives the NFA resulting from applying the procedure to (abb+a)∗.

5

procedure NFA (r) =

begin

Q := {r};

A := /0;

set δ(r,a) := /0 for all a ∈ Σ;

toProc := {r};

while toProc 6= /0 do

begin

choose r1 ∈ toProc;

delete r1 from toProc;

if r1

√
then add r1 to A;

compute T = out(r1);
for each 〈a,r′1〉 ∈ T do

begin

add r′1 into δ(r1,a);
if r′1 6∈ Q then add r2 to Q and toProc;

end

end;

return NFA 〈Q,Σ,r,δ,A〉;
end

Figure 2: Procedure for building NFA from regular expression.

a

b

a

b bb(abb+a)∗

b(abb+a)∗

(abb+a)∗

Figure 3: A NFA for (abb+a)∗.

6


