
CSC444

October 26, 2014

Contents

1 Parse trees 2

1.1 Definitions . 3

1.2 Equivalence classes of derivations 4

1.2.1 An inequivalent derivation 6

1.2.2 Leftmost and rightmost derivations 6

1.3 Notation . 8

1.4 Summary of results . 8

1.5 Ambiguity . 9

2 PDA review 10

2.1 Examples . 10

3 Determinism 14

3.1 Deterministic context-free languages 15

3.1.1 Definitions . 15

3.1.2 (Negative) results . 17

1

1 Parse trees

Let G be a context-free grammar. We’ve already seen that there may be
strings w ∈ L(G) that do not have a unique derivation.

Example 1.1. Let G be given by V = {S, (,)}, Σ = {(,)}, R = {S →
ε, S → SS, S → (S)}.

Sample derivations:

• S ⇒ SS ⇒ (S)S ⇒ ()S ⇒ ()(S) ⇒ ()()

• S ⇒ SS ⇒ S(S) ⇒ S() ⇒ (S)() ⇒ ()()

In some sense, these derivations are “the same”.

• The rules used are the same.

• The rules are applied at the same places in the intermediate strings.

Only the order in which the rules are applied is different.

We would like a way to express that although the rules are applied in a
different order, these two derivations are in essence the same.

One way to do this is by considering the derivation pictorially using what
are called parse trees.

Example 1.2. The parse tree for both derivations given above is the follow-
ing:

S

/ \

S S

/|\ /|\

(S) (S)

| |

e e

2

The nodes in the tree are labeled by symbols in V . The topmost node is
called the root, and the nodes along the bottom are the leaves. All leaves are
labeled by terminals or ε.

By concatenating the labels of the leaves, from left to right, we obtain the
derived string of terminals, called the yield of the parse tree.

1.1 Definitions

Let G = (V,Σ, R, S) be an arbitrary context-free grammar. Then the parse

tree for G is defined as follows:

• There is a parse tree for each for each a ∈ Σ. It has a single node that
is both the root and a leaf. The yield of the parse tree is a.

• If A → ε is a rule in R, then A → ε is a parse tree. Its root is the node
labeled A and its leaf is the node labeled ε. The yield of the parse tree
is ε.

• If A1 → (T1)y1, ..., An → (Tn)yn are parse trees, where n ≥ 1, with
roots labeled A1, ..., An, and with yields y1, ..., yn, and A → A1...An is
a rule in R, then A → A1, ..., An is a parse tree. It’s root is the new
node A, it’s leaves are the leaves of subtrees, and its yield is y1...yn.

• Nothing else is a parse tree.

Example 1.3. Consider the two derivations of the string ()(()) from the
grammar for the language of balanced parentheses:

• S ⇒ SS ⇒ S(S) ⇒ S((S)) ⇒ S(()) ⇒ ()(())

• S ⇒ SS ⇒ (S)S ⇒ ()S ⇒ ()(S) ⇒ ()(())

S

/ \

S S

/|\ /|\

(S) (S)

| /|\

3

e (S)

|

e

1.2 Equivalence classes of derivations

Intuitively, parse trees are ways of representing derivations of strings in L(G)
so that the superficial differences between derivations due to a different or-
dering of the application of rules are suppressed.

In fact, parse trees represent equivalence classes of derivations.

More formally, let G = (V,Σ, R, S) be a context-free grammar, and let D =
x1 ⇒ x2 ⇒ ... ⇒ xn and D′ = x′

1 ⇒ x′

2 ⇒ ... ⇒ x′

n be two derivations in G,
where

• xi, x
′

i ∈ V ∗ for i = 1, ..., n,

• x1, x
′

1 ∈ V − Σ, and

• xn, x
′

n ∈ Σ∗.

Note. This means that both are derivations of terminal strings from a single
non-terminal.

We say that DprecedesD′, written D ≺ D′, if n > 2 and there is an integer
k, 1 < k < n such that:

• For all i 6= k we have xi = x′

i;

• xk−1 = x′

k−1 = uAvBw where u, v, w ∈ V ∗, and A,B ∈ V − Σ;

• xk = uyvBw where A → y ∈ R;

• x′

k = uAvzw where B → z ∈ R;

• xk+1 = x′

k+1
= uyvzw.

4

This means that the two derivations are identical except for two consecutive
steps during which the same two non-terminals are replaced with the same
two strings, but in opposite orders in the two derivations.

The derivation in which the leftmost of the two non-terminals is replaced
first is said to precede the other.

Example 1.4. Consider the following three derivations D1, D2, and D3 in
the grammar for the language of balanced parentheses:

D1 = S ⇒ SS ⇒ (S)S ⇒ ((S))S ⇒ (())S ⇒ (())(S) ⇒ (())()

D2 = S ⇒ SS ⇒ (S)S ⇒ ((S))S ⇒ ((S))(S) ⇒ (())(S) ⇒ (())()

D3 = S ⇒ SS ⇒ (S)S ⇒ ((S))S ⇒ ((S))(S) ⇒ ((S))() ⇒ (())()

We have that D1 ≺ D2 and D2 ≺ D3.

It is not the case, however, that D1 ≺ D3 since D1 and D3 differ in more
than one intermediate string.

Note that all three have the same parse tree, given below:

S

/ \

S S

/|\ /|\

(S) (S)

/|\ |

(S) e

|

e

Definition 1.5. We say that two derivations D and D′ are similar if the
pair (D,D′) belongs in the reflexive, symmetric, transitive closure of ≺.

Note. By definition, similarity is an equivalence relation.

Informally, two derivations are similar if they can be transformed one into
the other via a sequence of “switchings” in the order in which the rules are
applied.

A “switching” replaces a derivation either by one that precedes it or by one
that it precedes.

5

Example 1.6. The derivations D1, D2 and D3 are all similar since D1 ≺ D2

and D2 ≺ D3 so that D1 is similar to D3.

There are also many other similar derivations.

All of these derivations have the same parse tree given above.

The derivations are similar because, informally, they represent applications
of the same rules at the same positions in the strings, only differing in the
relative order of the applications.

1.2.1 An inequivalent derivation

There are, however, other derivations of the string (())() that are not similar

to the ones mentioned above.

Example 1.7. S ⇒ SS ⇒ SSS ⇒ S(S)S ⇒ S((S))S ⇒ S(())S ⇒
S(())(S) ⇒ S(())() ⇒ (())()

This derivation has the following parse tree:

S

/ \

e S

/ \

S S

/|\ /|\

(S) (S)

/|\ |

(S) e

|

e

1.2.2 Leftmost and rightmost derivations

Each equivalence class of derivations under similarity, that is, each parse tree,
contains a derivation that is maximal under ≺.

This derivation cannot, by definition, be preceded by any other derivation in
the tree. It is called the leftmost derivation.

6

A leftmost derivation exists in every tree, and can be found as follows:

• Start at the root of the tree.

• Replace the leftmost non-terminal in the string according to the rule
suggested by the parse tree.

• Repeat until the string consists of only terminals.

Example 1.8. Consider a grammar for the language of balanced parenthe-
ses.

G = (V,Σ, R, S) where V = {S, (,)}, Σ = {(,)}, R = {S → ε, S → SS, S →
(S)}.

Consider the following two derivations D1 and D2 in this grammar:

D1 = S ⇒ SS ⇒ (S)S ⇒ ((S))S ⇒ (())S ⇒ (())(S) ⇒ (())()

D2 = S ⇒ SS ⇒ (S)S ⇒ ((S))S ⇒ ((S))(S) ⇒ (())(S) ⇒ (())()

Note that both have the same parse tree, given below:

S

/ \

S S

/|\ /|\

(S) (S)

/|\ |

(S) e

|

e

The leftmost derivation is D1 = S ⇒ SS ⇒ (S)S ⇒ ((S))S ⇒ (())S ⇒
(())(S) ⇒ (())()

If we look at the chart relating the ten derivations in the equivalence class
for this tree we can see that no derivation precedes D1.

Similarly, a rightmost derivation is one that does not precede any other
derivation.

We obtain a rightmost derivation by replacing the rightmost non-terminal at
each step.

7

Example 1.9. Again consider the parse tree given in Example 1.

The leftmost derivation for this tree is D10 = S ⇒ SS ⇒ S(S) ⇒ S() ⇒
(S)() ⇒ ((S))() ⇒ (())()

Fact 1.10. Each parse tree has exactly one leftmost and one rightmost

derivation.

Reason 1.11. There is only one choice at each step for which non-terminal
to expand, namely either the leftmost or the rightmost.

1.3 Notation

We write x
L
⇒ y if and only if x = wAβ, y = wαβ, where w ∈ Σ∗, α, β ∈ V ∗,

A ∈ V − Σ, and A → α is a rule of G.

If x1 ⇒ x2 ⇒ x3 ⇒ ... ⇒ xn is a leftmost derivation, then x1

L
⇒x2

L
⇒ ...

L
⇒xn.

We can define x
R
⇒ y similarly for rightmost derivations.

1.4 Summary of results

We can summarize the results for parse trees as follows:

Theorem 1.12. Let G = (V,Σ, R, S) be a context-free grammar, and let

A ∈ V − Σ, and w ∈ Σ∗. Then the following statements are equivalent:

• A ⇒∗ w

• There is a parse tree with root A and yield w.

• There is a leftmost derivation A
L∗

⇒w.

• There is a rightmost derivation A
R∗

⇒w.

8

1.5 Ambiguity

Definition 1.13. A grammar G that has at least one string with two or
more distinct parse trees is called ambiguous.

Example 1.14. The grammar G presented before for the language of bal-
anced parentheses is ambiguous.

The string (())() has two distinct parse trees.

Why does this matter?

The process of assigning a parse tree to a string, also known as parsing the

string, is an important first step toward understanding the structure of a
string since it enables us to see why it is that the string is in the language.

This is vitally important when dealing with a programming language.

Ambiguous grammars are of no help in parsing since they do not assign a
unique parse tree, that is, a unique meaning, to each string in the language.

It is possible to produce a grammar for the language of balanced parentheses
that is unambiguous.

Unfortunately, there are context-free languages with the property that all
context-free grammars that generate them are ambiguous.

Such languages are called inherently ambiguous.

Example 1.15. The language L = { anbncmdm | n ≥ 1, m ≥ 1 } ∪
{ anbmcmdn | n ≥ 1, m ≥ 1 } is inherently ambiguous.

This is proved by showing that infinitely many strings of the form anbncndn

for n ≥ 1 must have two distinct leftmost derivations.

The proof is long and tedious, so it is omitted.

Fortunately, programming languages are never inherently ambiguous.

9

2 PDA review

2.1 Examples

Example 2.1. L = {wcwR | w ∈ {a, b}∗ }

w1 = abababcbababa ∈ L

w2 = abcab /∈ L

w3 = abba /∈ L

How will the automaton work?

• It will have two states that correspond to “have not seen the c” and
“have seen the c”. The former will be the starting state, and the latter
will be the final state.

• When in state “have not seen the c”, it will push the symbols that it
reads onto the stack.

• When it encounters the c it switches states without changing the stack.

• In the state “have seen the c”, it compares the current input symbol
to the symbol on the top of the stack and advances past both if they
match.

• Only valid strings, that is, ones that have matching a’s and b’s and
contain a c in the middle will cause acceptance. Any other string will
reach a situation where there is no transition to take.

Let M = (K,Σ,Γ,∆, s, F) where K = {s, f}, Σ = {a, b, c}, Γ = {a, b},
F = {f}, and ∆ contains the following five transitions:

• ((s, a, ε), (s, a))

• ((s, b, ε), (s, b))

• ((s, c, ε), (f, ε))

• ((f, a, a), (f, ε))

10

• ((f, b, b), (f, ε))

Sample accepting computation: w = abacaba

State Unread input Stack Transition
s abacaba ε —
s bacaba a 1
s acaba ba 2
s caba aba 1
f aba aba 3
f ba ba 4
f a a 5
f ε ε 4

Sample rejecting computation: w = aaaa

State Unread input Stack Transition
s aaaa ε —
s aaa a 1
s aa aa 1
s a aaa 1
s ε aaaa 1

Example 2.2. Now consider the language L = {wwR | w ∈ {a, b}∗ }.

This example differs Example 1 in that there is no center marker c to tell
us when to switch from the state that pushes input onto the stack into the
state that reads input while popping characters off the stack.

We will have to use nondeterminism to “guess” when to make the switch.

Let M = (K,Σ,Γ,∆, s, F) where K = {s, f}, Σ = {a, b}, Γ = {a, b}, F =
{f}, and ∆ contains the following five transitions:

• ((s, a, ε), (s, a))

• ((s, b, ε), (s, b))

11

• ((s, ε, ε), (f, ε))

• ((f, a, a), (f, ε))

• ((f, b, b), (f, ε))

Sample accepting computation: w = abba

State Unread input Stack Transition
s abba ε —
s bba a 1
s ba ba 2
f ba ba 3
f a a 5
f ε ε 4

If there is no way to “guess” correctly, then the string will not be accepted,
for example with w = babaa

Example 2.3. Let L = {w ∈ {a, b}∗ | w has an equal number of a’s and b’s }.

How will the automaton work?

• The automaton will keep either a string of a’s or a string of b’s on its
stack.

• A string of a’s indicates thatM has seen more a’s than b’s at the current
point in time. The size of the stack is the amount of the excess.

• A string of b’s represents an excess of b’s.

• In either case, a marker c is used to indicate that the bottom of the
stack has been reached.

Let M = (K,Σ,Γ,∆, s, F) where K = {s, q, f}, Σ = {a, b}, Γ = {a, b, c},
F = {f}, and ∆ is given below:

• ((s, ε, ε), (q, c))

12

• ((q, a, c), (q, ac))

• ((q, a, a), (q, aa))

• ((q, a, b), (q, ε))

• ((q, b, c), (q, bc))

• ((q, b, b), (q, bb))

• ((q, b, a), (q, ε))

• ((q, ε, c), (f, ε))

The purpose of the transitions is the following:

• Transition 1 initializes the computation. It puts M into state q while
placing a c on the bottom of the stack.

• In state q reading a, M either starts up a stack of a’s from the bottom
using Transition 2, adds an a to an existing stack of a’s using Transition
3, or pops a b off the stack using Transition 4.

• In state q reading b, M3 either starts up a stack of b’s from the bottom
using Transition 5, adds to an existing stack of b’s using Transition 6,
or pops an a off the stack using Transition 7.

• When c is the topmost character on the stack and there are no char-
acters left to read, then we can remove the c using Transition 8 and
accept the string since there are no outstanding a’s or b’s.

Sample accepting computation: w = aabaaabbbb

13

State Unread input Stack Transition Comment
s aabaaabbbb ε — Initial configuration
q aabaaabbbb c 1 Bottom marker
q abaaabbbb ac 2 Start stack of a’s
q baaabbbb aac 3 Continue stack of a’s
q aaabbbb ac 7 Pop off an a
q aabbbb aac 3 Add another a
q abbbb aaac 3 Add another a
q bbbb aaaac 3 Add another a
q bbb aaac 7 Pop off an a
q bb aac 7 Pop off an a
q b ac 7 Pop off an a
q ε c 7 Pop off an a
f ε ε 8 Accept the string

3 Determinism

The definition we gave for a pushdown automaton was non-deterministic.

Question 3.1.
Can we always find an equivalent deterministic pushdown automaton for a
given context-free language?

Answer : Unfortunately not.

There are some context-free languages that cannot be accepted by determin-
istic pushdown automata.

This is a dire result, especially if we actually want to produce a parser for
the context-free language.

Some good news : For most programming languages one can construct deter-
ministic pushdown automata that accept all syntactically correct programs.

14

3.1 Deterministic context-free languages

We will first introduce the definitions for deterministic pushdown automata
and then talk about the negative results we mentioned above.

3.1.1 Definitions

A pushdown automaton is deterministic if for each configuration there is at
most one configuration that can succeed it in a computation by M .

Note. In the book they make a point to exclude transitions of the form
((s, ε, ε), (q, ε)) from their definition. Those transitions are implicitly ex-
cluded by our definition.

Example 3.2. The pushdown automaton (given below) for the language
{wcwR | w ∈ {a, b}∗ } is deterministic. For each choice of state and each
input symbol, there is only one possible transition.

Let M = (K,Σ,Γ,∆, s, F} where K = {s, f}, Σ = {a, b, c}, Γ = {a, b},
F = {f}, and ∆ contains the following five transitions:

• ((s, a, ε), (s, a))

• ((s, b, ε), (s, b))

• ((s, c, ε), (f, ε))

• ((f, a, a), (f, ε))

• ((f, b, b), (f, ε))

Example 3.3. On the other hand, the pushdown automaton for the lan-
guage {wwR | w ∈ {a, b}∗ } was non-deterministic. Either Transition 1
or Transition 2 may be followed by Transition 3. These are the transi-
tions that “guess” the middle of the string, an action that is intuitively
non-deterministic.

Let M = (K,Σ,Γ,∆, s, F} where K = {s, f}, Σ = {a, b}, Γ = {a, b},
F = {f}, and ∆ contains the following five transitions:

• ((s, a, ε), (s, a))

15

• ((s, b, ε), (s, b))

• ((s, ε, ε), (f, ε))

• ((f, a, a), (f, ε))

• ((f, b, b), (f, ε))

Deterministic context-free languages are essentially those that are accepted
by a deterministic pushdown automaton. However, we need to change the
acceptance condition slightly so that we don’t exclude languages that are
intuitively deterministic.

L ⊆ Σ∗ is a deterministic context-free language if L$ = L(M) for some
deterministic pushdown automaton.

$ is some new symbol, not in Σ, which is appended to each input string for
the purpose of marking the end.

So a deterministic pushdown automaton has the capability of sensing the end
of the input string.

Why do we need this additional assumption?

Consider L = a∗ ∪ { anbn | n ≥ 1 }.

A deterministic machine cannot simultaneously:

• Keep track of how many a’s it has seen in order to compare it against
any b’s it may find.

• Be ready to accept with an empty stack in case no b’s do follow.

But L$ is easy to accept deterministically: If $ is found while still pushing
a’s, then the string consists of all a’s and the automaton can empty its stack
and accept.

This additional assumption does not hurt us.

Claim 3.4. Every deterministic context-free language, as just defined, is a

context-free language.

16

Reason 3.5. Suppose that a deterministic pushdown automaton M accepts
L$. Then a (non-deterministic) pushdown automaton M ′ can be constructed
to accept L.

M ′ “imagines” a $ in the input and jumps to a new set of states from which
it needs no further input.

3.1.2 (Negative) results

Consider the language L = { anbmcp | m,n, p ≥ 0, and m 6= n or m 6= p }.

It would seem that a pushdown automaton could accept this language only
by guessing which of the two blocks to compare: either the a’s and the b’s or
the b’s and the c’s. However, proving that L is not deterministic requires a
more indirect approach.

Theorem 3.6. The class of deterministic context-free languages is closed

under complementation.

We now sketch the proof.

Consider a language L$ accepted by a deterministic pushdown automaton
M .

We can assume that M is simple and accepts by empty stack.

Reasons:

• To transform it to one that accepts by empty stack, just do as in the
proof of Theorem 3.4.2 and put a bottom of stack marker on the stack
as the first move and remove it at the end of every computation.

• Transform the automaton into a simple one using the procedure we
described before. It will preserve determinism.

Not-quite-correct idea: Reverse the conditions for acceptance, that is, accept
when the stack is not empty and the automaton is in a non-final state.

Sticking point : M may reject because it never finished reading the input.

This can happen in the following two circumstances:

17

• M reaches a configuration that has no following configuration;

• M enters a configuration from which it can apply an infinite sequence
of configurations that do not consume any input.

A configuration C that meets either of these two criteria is called a dead end.
In such configurations, a deterministic pushdown automaton M can neither
complete reading the input nor reduce the length of data in the stack.

More formally, in a simple pushdown automaton M , a triple (s, a, A) is a
dead end if, from any configuration C, M must apply a transition with left-
hand triple (s, a, A) and never reaches either configuration (q, ε, α) [i.e. the
end of the input] or a configuration (q, a, ε) [i.e. an empty stack with input
remaining to be read].

Construction 3.7. GivenM we will produce an automatonM ′ that accepts
all the strings not accepted by M , including those that drive M into a dead
state.

The first task is to create M ′ such that whenever M enters a dead end, M ′

completes reading the input and empties the stack, thus accepting the string.

Let D be the set of dead end triples in M . (Note that this proof is not
constructive).

Suppose (s, a, A) ∈ D. There are several steps to the dead-state transforma-
tion:

• Remove all transitions that are compatible with (s, a, A).

Two transitions ((s, a, α), (q, β)) and ((t, b, σ), (r, γ)) are compatible if
s = t, a = b or a = ε or b = ε, and either α is a prefix of σ or σ is a
prefix of α.

By removing all compatible transitions we are ensuring that the au-
tomaton M ′ will not get stuck or enter a loop once it reaches (s, a, A).

• Add the transition ((s, a, A), (q, ε)) that reads a and pops A from the
stack where q is a new state.

• Add the transitions ((q, b, ε), (q, ε)) for all b ∈ Σ.

18

• Add the transition ((q, }, ε), (p, ε)) where p is a new state.

These transitions allow M ′ to read the remainder the input once it
reaches (s, a, A).

• Add the transitions ((p, ε, B), (p, ε)) for all B ∈ Γ

These transitions will allow M ′ to remove everything from the stack
once it reaches state p.

To complete the construction we must:

• Make sure that when M completes reading the input and empties its
stack, M ′ does not clean the stack.

• Make sure that if M completes reading the input but does not accept,
M ′ completes reading the input and empties the stack.

The details of the remainder of the construction are omitted.

How does Theorem 3.7.1 show that L is not deterministic?

Suppose that L is deterministic. Then L is deterministic context-free, and
thus, context-free.

So L ∩ a∗b∗c∗ would be context-free by Theorem 3.5.2.

But L ∩ a∗b∗c∗ = { anbncn | n ≥ 0 }, a language that is not context-free.

Thus, L cannot be deterministic.

Corollary 3.8. The class of deterministic context-free languages is properly

contained in the class of context-free languages.

End result : For pushdown automata, non-determinism is more powerful than
determinism.

19

	Parse trees
	Definitions
	Equivalence classes of derivations
	An inequivalent derivation
	Leftmost and rightmost derivations

	Notation
	Summary of results
	Ambiguity

	PDA review
	Examples

	Determinism
	Deterministic context-free languages
	Definitions
	(Negative) results

