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1 Pushdown automata

Clearly, a finite automaton cannot be a recognizer for a context-free language.

Reason: Non-regular languages, such as { anbn | n ≥ 0 }, can be represented
using context-free grammars.

We will see, however, that giving a finite automaton access to a stack gives
it enough power to recognize context-free languages.
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How does a stack help?

Suppose that we are interested in recognizing the language { anbn | n ≥ 0 }.
The following algorithm works:

if the string is empty

then accept

while (current input symbol = a)

push (current input symbol)

if (stack is empty)

then reject

while (not at end of string)

if (current input symbol != b)

then reject

else if (stack is empty)

then reject

else pop the stack and advance to the next input symbol

if (stack is empty)

then accept

else reject

To look at it another way, consider recognizing an arbitrary context-free
grammar G.

If we want to deal with a rule of the form A → aB, then a finite automata can
easily simulate this by moving from a state A to a state B while consuming
the letter a.

But what about a rule of the form A → aBb? We still need to move from
state A to state B and read the letter a, but what do we do with the letter
b?

If we have a stack, then we can push b onto the stack and deal with it later,
perhaps by checking it against a b in the input.
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1.1 Definitions

Definition 1.1. A pushdown automaton is a sextupleM = (K,Σ,Γ,∆, s, F )
where:

• K is a finite set of states,

• Σ is an alphabet (the input symbols),

• Γ is an alphabet (the stack symbols),

• s ∈ K is the initial state

• F ⊆ K is the set of final states, and

• ∆, the transition relation, is a finite subset of (K × (Σ ∪ {ε})× Γ∗)×
(K × Γ∗)

If ((p, a, β), (q, γ)) ∈ ∆, then M , whenever it is in state p with β at the top
of the stack, may read a from the input tape (note that a = ε is allowed
in which case the input is not consulted), replace β by γ on the top of the
stack, and enter state q.

((p, a, β), (q, γ)) is called a transition of M.

Unlike finite automata, we are first giving the nondeterministic version of
pushdown automata. There may be several transitions of M that are appli-
cable at any point.

Terminology:

• We push a symbol when we add it to the top of the stack.

• We pop a symbol when we remove it from the top of the stack.

• A configuration of a pushdown automaton is a member of K×Σ∗×Γ∗.
The first component is the state of the machine, the second is the
portion of the input yet to be read, and the third is the contents of the
pushdown store, read top-down.

For example, if (q, w, abc) were the configuration, then the a would be at the
top of the stack and the c at the bottom.

More terminology:
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• If (p, x, α) and (q, y, ρ) are configurations of M , we say that (p, x, α)
yields in one step (q, y, ρ), written (p, x, α) 7→M (q, y, ρ), if there is a
transition ((p, a, β), (q, γ)) ∈ ∆ such that x = ay, α = βτ , and ρ = γτ

for some τ ∈ Γ∗.

• The reflexive, transitive closure of 7→M is written 7→∗

M
.

• M accepts a string w ∈ Σ∗ if (s, w, ε) 7→∗

M
(p, ε, ε) for some state p ∈ F .

Put another way M accepts a string ⇔ there is a sequence of configurations
C0, C1, ..., Cn where n > 0, such that C0 7→M C1 7→M ... 7→M Cn, C0 =
(s, w, ε) and Cn = (p, ε, ε).

Yet more terminology:

• Any sequence of configurations C0, C1, ..., Cn such that Ci 7→M Ci+1 for
i = 0, ..., n − 1 will be called a computation by M . It has length n or
has n steps.

• The language accepted by M, denoted L(M), is the set of all strings
accepted by M .

• As with finite automata, we will omit the M from the notation when
the pushdown automata under consideration is understood.

Example 1.2. Let L = {w ∈ {a, b}∗ | w has an equal number of a’s and b’s }.

How will the automaton work?

• The automaton will keep either a string of a’s or a string of b’s on its
stack.

• A string of a’s indicates thatM has seen more a’s than b’s at the current
point in time. The size of the stack is the amount of the excess.

• A string of b’s represents an excess of b’s.

• In either case, a marker c is used to indicate that the bottom of the
stack has been reached.

Let M = (K,Σ,Γ,∆, s, F ) where K = {s, q, f}, Σ = {a, b}, Γ = {a, b, c},
F = {f}, and ∆ is given below:
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• ((s, ε, ε), (q, c))

• ((q, a, c), (q, ac))

• ((q, a, a), (q, aa))

• ((q, a, b), (q, ε))

• ((q, b, c), (q, bc))

• ((q, b, b), (q, bb))

• ((q, b, a), (q, ε))

• ((q, ε, c), (f, ε))

The purpose of the transitions is the following:

• Transition 1 initializes the computation. It puts M into state q while
placing a c on the bottom of the stack.

• In state q reading a, M either starts up a stack of a’s from the bottom
using Transition 2, adds an a to an existing stack of a’s using Transition
3, or pops a b off the stack using Transition 4.

• In state q reading b, M3 either starts up a stack of b’s from the bottom
using Transition 5, adds to an existing stack of b’s using Transition 6,
or pops an a off the stack using Transition 7.

• When c is the topmost character on the stack and there are no char-
acters left to read, then we can remove the c using Transition 8 and
accept the string since there are no outstanding a’s or b’s.

Sample accepting computation: w = aabaaabbbb
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State Unread input Stack Transition Comment
s aabaaabbbb ε — Initial configuration
q aabaaabbbb c 1 Bottom marker
q abaaabbbb ac 2 Start stack of a’s
q baaabbbb aac 3 Continue stack of a’s
q aaabbbb ac 7 Pop off an a
q aabbbb aac 3 Add another a
q abbbb aaac 3 Add another a
q bbbb aaaac 3 Add another a
q bbb aaac 7 Pop off an a
q bb aac 7 Pop off an a
q b ac 7 Pop off an a
q ε c 7 Pop off an a
f ε ε 8 Accept the string

1.2 Relationship to regular languages

We know, by direct construction, that the regular languages are a proper

subset of the context-free languages.

• They are a subset since we can construct a grammar for every regular
language.

• They are a proper subset since we can express non-regular languages
using context-free grammars.

It is very easy to show Part 1 using pushdown automata, because every finite
automaton can be viewed as a pushdown automaton that ignores its stack.

More formally, let M = (K,Σ,∆, s, F ) be a NFA. Then a pushdown automa-
ton M ′ = (K,Σ, ∅,∆′, s, F ) where ∆′ = { ((p, u, ε), (q, ε)) | (p, u, q) ∈ ∆ }
accepts the same language as M .

M ′ always pushes and pops the empty string onto its stack, but otherwise
behaves like M .
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2 Pushdown automata and context-free gram-

mars

As with the regular languages, the two different representations we considered
capture the same set of languages.

Theorem 2.1. The class of languages accepted by pushdown automata is

exactly the class of context-free languages.

We will break the proof into two parts, one for each direction.

2.1 Construction of a pushdown automaton

Theorem 2.2. Each context-free language is accepted by some pushdown

automaton.

Proof. Let G = (V,Σ, R, S) be a context-free grammar. We must construct
a pushdown automaton M = (K,Σ′,Γ,∆, s, F ) s.t. L(M) = L(G). � M

has two states p and q. M works as follows:

• M begins in state p with an empty stack.

• M begins the computation by pushing S, the start symbol of G, onto
its initially empty pushdown store, and entering state q.

• On each subsequent step M either:

– Replaces the topmost symbol A on the stack, provided that A is
a non-terminal, by the right-hand side x of some rule A → x; or

– Pops the topmost symbol from the stack that matches the next
input symbol, provided that it is a terminal symbol.

The formal definition of M is the following:

• K = {p, q}

• s = p
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• F = {q}

• Γ = V , that is, M will use the set of terminal and non-terminals as the
stack alphabet

• Σ = Σ′

All that remains is to define the transition relation.

∆ contains the following transitions:

• ((p, ε, ε), (q, S))

• ((q, ε, A), (q, x)) for each rule A → x in R

• ((q, a, a), (q, ε)) for each a ∈ Σ

Intuitively these transitions do the following:

• Transition 1 pushes the start symbol onto the stack.

• Transitions of type 2 correspond to replacing the top non-terminal on
the stack with its expansion.

• Transitions of type 3 correspond to popping the terminals off the stack
to expose the next non-terminal.

Claim 2.3. Let w ∈ Σ∗ and α ∈ (V −Σ)V ∗∪{ε}. Then S
L∗

⇒wα if and only

if (q, w, S) 7→∗

M
(q, ε, α)

This claim suffices to show that L(G) = L(M) since if we take α = ε then

the claim states that S
L∗

⇒w if and only if (q, w, S) 7→∗

M
(q, ε, ε).

Proof. Postponed until after our discussion of parse trees. �
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2.1.1 An example

Consider the grammar G = (V,Σ, R, S) with V = {S, a, b, c}, Σ = {a, b, c}
and R = {S → aSa, S → bSb, S → c}.

Sample derivations:

• S ⇒ aSa ⇒ abSba ⇒ abaSaba ⇒ abacaba

• S ⇒ aSa ⇒ aaSaa ⇒ aacaa

L(G) = {wcwR | w ∈ {a, b}∗ }.

The corresponding pushdown automaton using the above construction is
M = ({p, q},Σ, V,∆, p, {q}) where ∆ contains the following transitions:

• ((p, ε, ε), (q, S)

• ((q, ε, S), (q, aSa))

• ((q, ε, S), (q, bSb))

• ((q, ε, S), (q, c))

• ((q, a, a), (q, ε))

• ((q, b, b), (q, ε))

• ((q, c, c), (q, ε))

As an example, the string abacaba is accepted by M through the following
sequence of moves:
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State Unread input Stack Transition
p abacaba ε —
q abacaba S 1
q abacaba aSa 2
q bacaba Sa 5
q bacaba bSba 3
q acaba Sba 6
q acaba aSaba 2
q caba Saba 5
q caba caba 4
q aba aba 7
q ba ba 5
q a a 6
q ε ε 5

Let’s compare this with the computation of the pushdown automaton that
we designed before.

M = (K,Σ,Γ,∆, s, F ) where K = {s, f}, Σ = {a, b, c}, Γ = {a, b}, F = {f},
and ∆ contains the following five transitions:

• ((s, a, ε), (s, a))

• ((s, b, ε), (s, b))

• ((s, c, ε), (f, ε))

• ((f, a, a), (f, ε))

• ((f, b, b), (f, ε))

Accepting computation for w = abacaba
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State Unread input Stack Transition
s abacaba ε —
s bacaba a 1
s acaba ba 2
s caba aba 1
f aba aba 3
f ba ba 4
f a a 5
f ε ε 4

2.2 Construction of a context-free grammar

Theorem 2.4. If a language is accepted by a pushdown automaton, it is a

context-free language.

It is helpful for this construction to consider a restricted form of pushdown
automata.

2.2.1 Simple pushdown automata

Definition 2.5. A pushdown automaton is simple if whenever ((q, a, β), (p, γ))
is a transition and q is not the start state, then β ∈ Γ and |γ| ≤ 2.

A simple pushdown automaton always consults its topmost stack symbol
(and no symbols below it), and replaces it either with ε, or with a single
stack symbol or with two stack symbols.

Why can’t q be the start state?

Because then the automaton could not work on an empty stack, rendering it
useless.

Note. This definition of simple is a bit different than the one in the textbook.
It is instructive to look at the definition in the book and the resulting proof.

Claim 2.6. If a language is accepted by an unrestricted pushdown automa-

ton, then it is accepted by a simple pushdown automaton.
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Proof. Let M = (K,Σ,Γ,∆, s, F ) be any pushdown automaton. We will
construct a simple pushdown automaton M ′ so that L(M) = L(M ′).

M ′ = (K ′,Σ,Γ ∪ {Z},∆′, s′, {f ′}) where s′ and f ′ are new states not in K,
and Z is a new stack symbol, the bottom stack symbol.

Initially, ∆′ contains all the transitions of ∆ plus the following additional
transitions:

We first add to ∆′ the transition ((s′, ε, ε), (s, Z)).

This transition starts the computation by placing the stack bottom symbol at
the bottom of the stack.

The stack bottom symbol will remain at the bottom of the stack throughout
the computation.

No transition of ∆′ will ever push a Z onto the stack except to replace it at
the bottom of the stack.

We also add to ∆′ the transitions ((f, ε, Z), (f ′, ε)) for each f ∈ F .

These transitions end the computation by removing Z from the bottom of
the stack.

We shall next replace all transitions in ∆′ that violate the simplicity condition

by equivalent transitions that satisfy the simplicity condition.

We will do that in three stages :

• Replace all transitions with |β| ≥ 2.

• Get rid of all transitions with |γ| > 2 without introducing any transi-
tions that have |β| ≥ 2.

• Remove all transitions with β = ε without introducing any transitions
with |β| ≥ 2 or |γ| > 2.

Stage 1 : Consider any transition ((q, a, β), (p, γ)) ∈ ∆′ where β = B1B2...Bn

with n > 1.

It will be replaced with new transitions that pop each of the Bi’s sequentially
rather than in one step.

Specifically, we add the transitions:
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((q, ε, B1), (qB1
, ε))

((qB1
, ε, B2), (qB1B2

, ε))

. . .

((qB1B2...Bn−2
, ε, Bn−1), (qB1B2...Bn−1

, ε))

((qB1B2...Bn−2Bn−1
, a, Bn), (p, γ))

where for i = 1, ..., n− 1, qB1B2...Bi
is a new state with the intuitive meaning

“state q after the symbols B1, B2, ..., Bi have been popped”.

We repeat this with all transitions that have |β| > 1. It is clear that these
modifications do not change the language recognized by the pushdown au-
tomaton.

Stage 2 : We now replace transitions ((q, a, β), (p, γ)) where γ = C1C2...Cm

and m ≥ 2 by the transitions:

((q, a, β), (r1, Cm))

((r1, ε, ε), (r2, Cm−1))

((r2, ε, ε), (r3, Cm−2))

. . .

((rm−2, ε, ε), (rm−1, C2))

((rm, ε, ε), (p, C1))

where r1, ..., rm are new states.

Note. At this point all transitions have |γ| ≤ 1, which if not corrected,
would be a loss of generality. This will be fixed in the next stage.

Clearly no transitions with |β| > 1 were added.

Stage 3 : Consider any transition ((q, a, ε), (p, γ)) with q 6= s′. These are the
only possible remaining violations of the simplicity condition.

Replace any such transition with all transitions of the form ((q, a, A), (p, γA))
for all A ∈ Γ ∪ {Z}.

This means that if the automaton could move without consulting its stack,
it can also move by consulting the top stack symbol, whatever it may be,
and then replacing it immediately.
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We know that there will always be at least one symbol on the stack during
the computation, namely the bottom of stack marker Z.

Note. At this stage we may introduce γ where |γ| = 2. This doesn’t violate
simplicity, but it is necessary to obtain general pushdown automata.

It is easy to see that this construction results in a simple pushdown automa-
ton M ′ s.t. L(M ′) = L(M).

This completes the claim that every pushdown automaton can be simulated
by a simple pushdown automaton. �

2.2.2 Proof of Theorem 3.4.2

Assume we are given a pushdown automatonM = (K,Σ,Γ,∆, s, F ) and that
we have converted it into a simple pushdown automaton M ′ = (K ′,Σ,Γ ∪
{Z},∆′, s′, {f ′}).

We will construct a context-free grammar G s.t. L(G) = L(M ′).

Let G = (V,Σ, R, S) where V contains, in addition to a new symbol S and the
symbols in Σ, a new symbol 〈q, A, p〉 for all q, p ∈ K ′ and each A ∈ Γ∪{ε, Z}.

If A ∈ Γ, then the non-terminal 〈q, A, p〉 represents any portion of the input
string that might be read between a point in time when M ′ is in state q with
A on top of its stack, and a point in time when M ′ removes that occurrence
of A from the stack and enters state p.

If A = ε then 〈q, ε, p〉 denotes a portion of the input string that might be
read between a time when M ′ is in state q and a time when it is in state p

with the same stack, without in the interim changing or consulting that part
of the stack.

The rules of R are of four types:

• S → 〈s, Z, f ′〉 where s is the start state of M and f ′ the new final state.

• For each transition ((q, a, B), (r, C)) where q, r ∈ K ′, a ∈ Σ ∪ {ε},
and B,C ∈ Γ ∪ {ε} and for each p ∈ K ′, we add the rule 〈q, B, p〉 →
a〈r, C, p〉.

14

• For each transition ((q, a, B), (r, C1C2)) where where q, r ∈ K ′, a ∈
Σ ∪ {ε}, B ∈ Γ ∪ {ε}, and C1, C2 ∈ Γ and for each p, p′ ∈ K ′, we add
the rule 〈q, B, p〉 → a〈r, C1, p

′〉〈p′, C2, p〉.

• For each q ∈ K ′, we add the rule 〈q, ε, q〉 → ε

Note. Because M ′ is simple, all of its transitions must be either Type 2 or
Type 3.

The rules of R can be understood intuitively as follows:

• Rules of Type 1 state that any input string which can be read by M ′

passing from state s to the final state, while at the same time the net
effect on the stack is that the stack bottom symbol was popped, is a
string in the language L(M ′).

• Rules of Type 4 say that no computation is needed to go from a state
to itself without changing the stack.

• A rule of Type 2 or a rule of Type 3 says that, if ((q, a, B), (p, γ)) ∈ ∆′,
then one of the possible computations that lead from state q to state
p while consuming B from the top of the stack, starts by reading a,
replacing B by γ, passing to state r, and then going on to consume γ

and end up in state p.

Since M ′ is simple γ = ε, γ = C or γ = C1C2 so Types 2 and 3 cover all the
possibilities.

If γ = C1C2 then this last computation can, in principle, pass through any
state p′ immediately after C1 is popped.

The following claim completes the proof:

Claim 2.7. For any q, p ∈ K ′, A ∈ Γ ∪ {ε}, and x ∈ Σ∗, 〈q, A, p〉 ⇒∗

G
x if

and only if (q, x, A) 7→∗

M ′ (p, ε, ε).

This claim suffices since 〈s, ε, f〉 ⇒∗

G
x for some f ∈ F if and only if

(s, x, ε) 7→∗

M ′ (f, ε, ε).

This means that x ∈ L(G) if and only if x ∈ L(M ′).

Proof. Omitted. �
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