CSC444

October 26, 2014

Contents

1 Context-free languages
We have seen two distinct ways of representing languages:

e Recognizer — Determines if a string is or is not in a language

e Generator — Produces strings in a language

In the remainder of the quarter we will introduce another class of languages
and two different representations for the class.

As with regular languages, we will:

e Introduce the language using one of its representations.

1

e Introduce the other representation.

e Show that both representations capture the same set of languages.
Context-free languages have two representations:

e Context-free grammars — generator

e Pushdown automata — recognizer

We will introduce the notion using the generator, then give the recognizer,
and finally show their equivalence.

2 Context-free grammars

If you have ever seen the formal specification of a programming language,
then you have likely seen a context-free grammar.

Let us start with the regular expressions and see how we can generalize them
to get a grammar.

Consider the regular expression a(a* U b*)b.

We generate a string in this language by doing the following:

e Write down an a
e Write down a string of a’s or a string of b’s, possibly of length 0

e Write down a b

So a string in the language has a beginning (the a), a middle (the string of
a’s or the string of b’s) and an end (the b).

Let S be a symbol that stands for a string in this language. Let the “middle
part” of the string be represented by the symbol M. Then we can express
the above by the following expression:

S — aMb

You should read the arrow as meaning “can be”.

How can we specify M?

It is either a string of a’s or a string of b’s, possibly of length 0. Let’s consider
the string of a’s. (The string of b’s will obviously be very similar). Let A
represent a string of a’s.

A — ¢ (since it may be empty)
A — aA

So we can get a string of a’s by either taking the empty string or by taking
an a and appending onto it a string of a’s.

The rules for the string of B’s are then:
B — ¢

B — 0B

So what is M?

M— A

M — B

Sample derivations:

e abbbb : aMb = aBb = abBb = abbBb = abbbBb = abbbb

e aaab : aMb = aAb = aaAb = aaaAb = aaab

This is an example of a context-free grammar.
Why is it called context-free?

Suppose we are considering the derivation of aaab above. If we are at some
intermediate stage we have something like aaAb.

We can consider the strings surrounding the A to be the “context” for the
symbol.

The rule A — aA says that we can replace any occurrence of A with aA
without taking the context of the symbol into account.

So no matter what is surrounding it, we can simply replace it with the text
on the right side of the rule.

This means that the grammar is context-free, since context does not play a
role in the derivation of the string.

2.1 Definition

Notation. The symbols S, M, A and B are called non-terminals. Only
non-terminals may appear on the left side of a rule.

Definition 2.1. A context-free grammar G is a quadruple (V,X, R,S)
where:

e V/ is an alphabet,
e 3 (the set of terminals) is a subset of V|

e R (the set of rules) is a finite subset of (V — X) x V*, and

e S (the start symbol) is an element of V — X.

Notation. o IV — Y are called non-terminals
e Forany A € V—3% and u € V* we write A —¢ u whenever (A, u) € R.

e For any strings u,v € V* we write u =¢ v if and only if there are
strings x,y € V*and A€V —Y s.t. u=2Ay,v=av'y,and A —g V.

e = is the reflexive, transitive closure of =¢

e [f the grammar is obvious we will leave off the G.

L(G), the language generated by some context-free grammar G, is { w € X* |
S=¢w}.

Notation. e We say that G generates each string in L(G).

e [is a context-free language if L = L(G) for some context-free grammar

G

e Any sequence of the form wy =¢ w; =g ws =¢ ... =¢ W, is called a
derivation in G of w, from wy. The derivation has n steps.

2.2 Examples

Example 2.2. Let G be the context-free grammar with V' = {S, A, A’ a},
Y={a}and R={S - AAA A — aA'" A — aA", A" — ¢}.

Sample derivations:

o S= AAA = aA'aA'aA" = aaa

o S = AAA = aA'aA'cA' = aaA’aa = aaaa

It is easy to recognize this language. £L(G) ={w € {a}* | |w| >3}

Example 2.3. Let G be the context-free grammar with V' = {S,a,b}, ¥ =
{a,b} and R ={S — aSbh, S — ¢}.

Sample derivations:

e S = aSb= aaSbb = aabb

e S = aSb= aaSbb = aaaSbbb = aaaaSbbbb = aaaabbbb

It’s fairly easy to recognize that £(G) = {a'b' |i >0}

So our generalization of regular expressions is more powerful!

Example 2.4. Let G be given by V. = {SANV,P}UX X =
{Amber, Simone, likes, furry,loud} and R = {S — PVP,P —- N,P —
AP, A — fuzzy, A — loud, N — Simone, N — Amber,V — likes}.

(G is intended to be a grammar for a part of English. S stands for sentence,
A for adjective, V for verb, and P for phrase.

Sample derivations:

e Amber likes Simone
e loud Amber likes fuzzy Simone
e loud loud loud loud loud Simone likes Amber

e loud Simone likes fuzzy Amber

e loud fuzzy loud Simone likes loud loud loud loud Simone

Note. English is not a context-free grammar, so the fault is not with us.

Example 2.5. Let G be given by V = {S,(,)}, ¥ = {(,)}, R = {5 —
e, 8 —= 585,585 — (9)}.

Sample derivations:
e 5= 55=5(5)=5((9) = 5(0) = 0(0)
¢ 5= 55=(5)5= (5= 005 = 0(0)

Note. e L(G) is the set of all strings with balanced parentheses. Again
we have devised a way to represent a non-regular language.

e A single string can have more than one derivation. We will get back to
that issue later.

Example 2.6. The grammar for the MindStorms robot.

Example 2.7. Let G be given by V = {S, A, B} U X, ¥ = {a,b} and R =
{S —aB,S - bA,A— a,A— aS,A— bAA, B —b,B — bS,B — aBB}.

Sample derivations:

o S = bA = baS = baaB = baab
e S = aB = aaBB = aabSaBB = aabaBabb = aabababb

It is not easy to determine, but £(G) = { w € {a, b} | w has an equal number of a’s and b’s }.

We can show this by proving:

e S =*w if and only if w consists of an equal number of a’s and b’s
o A =" w if and only if w has one more a than it has b’s

e B =*w if and only if w has one more b than it has a’s

I will leave the proof as a suggested problem.

3 All regular languages are context-free

Theorem 3.1. All reqular languages are context-free.

We will see this result again once we introduce pushdown automata, since it
is a trivial result of the definition.

For now, however, let’s give a direct construction.

Proof. Let L be a regular language and consider the DFAM =
(K,%,9,s, F) where L(M) = L. [Then L is also generated by the gram-
mar G(M) = (V,X,R,S) where V= KUY, S =35, and R = {q — ap |
0(¢g,a)=p}tU{qg—clqgeF}.

Each state of the automaton becomes a non-terminal and each transition of
a state ¢ into a state p consuming input a is transformed into a rule.
Example 3.2. Let K = {S, A}, ¥ = {a,b}, s =5, FF = {S}, and 0(S,a) =
A, 6(S,0) =S5,0(A,a) =S, §(A,b) = A.

What language is this? The set of all strings over {a, b}* with an even number
of a’s.

Then we can generate that language with the grammar: V' = {S, A, a, b} and
R={S—¢8—0bSS—aA A— aS, A— bA}.

S = bS = bbS = bbbS = bbbaA = bbbaaS = bbbaa
Claim 3.3. £(G(M)) = L(M) =L

Proof. Left as an exercise. [

	Context-free languages
	Context-free grammars
	Definition
	Examples

	All regular languages are context-free

