Automata Theory and Formal Grammars: Lecture 4

Minimal Deterministic Automata

Last Time:
- Regular Expressions and Regular Languages
- Properties of Regular Languages
- Relating NFAs and regular expressions: Kleene’s Theorem

Today:
- Decision procedures for FAs
- Distinguishing Strings with respect to a Language
- Minimum-state DFAs for Regular Languages
- Minimizing DFAs using Partition Refinement

Decision Procedures for FAs

A decision procedure is an algorithm for answering a yes/no question. A number of yes/no questions involving FAs have decision procedures.

- Given FA M and $x \in \Sigma^*$, is $x \in \mathcal{L}(M)$?
- Given FA M, is $\mathcal{L}(M) = \emptyset$?
- Given FAs M_1 and M_2, is $\mathcal{L}(M_1) \subseteq \mathcal{L}(M_2)$?

Answering the first is easy ... but what about the other two?
Deciding Whether $\mathcal{L}(M) = \emptyset$

$\mathcal{L}(M) = \emptyset \iff \forall x \in \Sigma^*. x \notin \mathcal{L}(M)$

The latter property can be checked using reachability analysis: do all paths from the start state lead to nonaccepting states?

Deciding Whether $\mathcal{L}(M_1) \subseteq \mathcal{L}(M_2)$ (cont.)

So how can we decide whether or not $\mathcal{L}(M_1) \subseteq \mathcal{L}(M_2)$?

- Build a FA for $\mathcal{L}(M_1) - \mathcal{L}(M_2)$.
- Complement M_2 to get $\overline{M_2}$.
- Apply the product construction to get $\Pi(M_1, \overline{M_2})$.
- Check whether or not $\mathcal{L}(\Pi(M_1, \overline{M_2})) = \emptyset$.

Minimizing Automata
How Many States Do You Need in a DFA?

Here are two DFAs recognizing the same language.

The right automaton seems to have a redundant state!

Questions about States in DFAs

- How many states does an DFA need to accept a given language?
- Can a DFA be “minimized” (i.e. can “unnecessary” states be identified and removed)?

We now devote ourselves to answering these questions. All involve a study of the notion of indistinguishability of strings.

Indistinguishability

Definition Let \(L \subseteq \Sigma^* \) be a language. Then the indistinguishability relation for \(L \), \(\preccurlyeq \subseteq \Sigma^* \times \Sigma^* \), is defined as follows.

\[x \preccurlyeq y \iff \forall z \in \Sigma^*. xz \in L \iff yz \in L \]

Intuitively, if \(x \preccurlyeq y \), then any common “extension” to \(x, y \) (the “z” in the definition) either makes both \(xz \) and \(yz \), or neither, elements of \(L \).

Notes

- \(x \preccurlyeq y \) means \(x, y \) are indistinguishable with respect to language \(L \).
 (That is, \(L \) must be given in order for \(\preccurlyeq \) to be well-defined.)
- \(\preccurlyeq \) relates arbitrary strings, not just elements in \(L \).
- If \(x \in L \) and \(x \preccurlyeq y \) then \(y \in L \) also (why?).
- Is it true that \(x \in L \) and \(y \in L \) imply that \(x \preccurlyeq y \)?

Examples of Indistinguishability

- Let \(L = \{ w \in \{0, 1\}^* \mid w \text{ ends in } 00 \} \). Is:
 - \(\varepsilon \preccurlyeq 1 \)? Yes
 - \(1 \preccurlyeq 011 \)? Yes
 - \(0 \preccurlyeq 10 \)? Yes
 - \(1 \preccurlyeq 0 \)? No; consider \(z = 0 \)

- Let \(L = \{ 0^n1^n \mid n \geq 0 \} \). Is:
 - \(\varepsilon \preccurlyeq 1 \)? No; consider \(z = 01 \)
 - \(0 \preccurlyeq 00 \)? No; consider \(z = 1 \)
 - \(01 \preccurlyeq 0011 \)? Yes
Relating \sqsubset^* and DFAs for L

Let $M = (Q, \Sigma, q_0, \delta, A)$ be a DFA accepting L, and suppose $x, y \in \Sigma^*$ are such that $\delta^*(q_0, x) = \delta^*(q_0, y)$.

Then $x \sqsubset y$.

Formally...

Lemma Let $M = (Q, \Sigma, q_0, \delta, A)$ be a DFA, and let $x, y \in \Sigma^*$ be such that $\delta^*(q_0, x) = \delta^*(q_0, y)$. Then $x \sqsubset^* y$.

Proof Fix $x, y \in \Sigma^*$, and suppose that $\delta^*(q_0, x) = \delta^*(q_0, y)$.

We must prove that $x \sqsubset^* y$, i.e. for any $z \in \Sigma^*$, $xz \in L(M)$ iff $yz \in L(M)$. So fix z.

By induction on z, one may establish that $\delta^*(q_0, xz) = \delta^*(q_0, yz)$.

Hence $\delta^*(q_0, xz) \in A$ iff $\delta^*(q_0, yz) \in A$.

This implies that $xz \in L(M)$ iff $yz \in L(M)$.

Note The contrapositive of the lemma says that if $x \not\sqsubset^* y$ then $\delta^*(q_0, x) \neq \delta^*(q_0, y)$; in other words, if $x \not\sqsubset^* y$ then x and y must lead to different states in any DFA accepting $L(M)$.

\sqsubset^* and Minimum-state Automata

The previous lemma says that if $x \not\sqsubset y$ then any DFA accepting L must have different states for x and y.

Question Suppose $x \not\sqsubset y$. Could an DFA for L equate the states to which x, y lead to from the start state?

The answer turns out to be “yes”. To establish this, we will show how to construct an automaton M_L for L with the property that if $x \not\sqsubset y$ then $\delta^*(q_0, x) = \delta^*(q_0, y)$.

A Fact About \sqsubset^*

Theorem Let $L \subseteq \Sigma^*$. Then \sqsubset^* is an equivalence relation on Σ^*.

Proof Outline To prove this we need to show that \sqsubset^* is:

- Reflexive: For any $x \in \Sigma^*$, $x \sqsubset^* x$.
- Symmetric: For any $x, y \in \Sigma^*$, if $x \sqsubset^* y$ then $y \sqsubset^* x$.
- Transitive: For any $x, y, z \in \Sigma^*$, if $x \sqsubset^* y$ and $y \sqsubset^* z$ then $x \sqsubset^* z$.
and Equivalence Classes

Since \preceq is an equivalence relation over Σ^*, every $x \in \Sigma^*$ belongs to a unique equivalence class:

$$[x]_{\preceq} = \{ y \in \Sigma^* \mid x \preceq y \}$$

Example

Let $L = \{ w \in \{0,1\}^* \mid w \text{ ends in 00} \}$.

- $[\epsilon]_{\preceq} = \{ y \in \{0,1\}^* \mid y \text{ does not end in 0} \}$
- What are the other equivalence classes of \preceq?
 - $[0]_{\preceq} = \{ y \in \{0,1\}^* \mid y \text{ ends in exactly one 0} \}$
 - $[00]_{\preceq} = \{ y \in \{0,1\}^* \mid y \text{ ends in at least two 0s} \}$

Note that every string in $\{0,1\}^*$ falls into one of these three equivalence classes!

Building M_L

In M_L strings indistinguishable with respect to L should lead to the same state.

Idea (for M_L)

- Introduce a state for each equivalence class of \preceq.
- Define the transitions so that $\delta^*(q_0, x)$ is $[x]_{\preceq}$.

Questions

- What should the start state be?
 The state corresponding to $[\epsilon]_{\preceq}$.
- What should the accepting states be?
 The states corresponding to $[x]_{\preceq}$ for each $x \in L$.
- What should the a-transition of the state for $[x]_{\preceq}$ be?
 The state corresponding to $[xa]_{\preceq}$.

Formalizing the Construction of M_L

Theorem

Let $L \subseteq \Sigma^*$, and consider the automaton $M_L = \langle Q_L, \Sigma, q_L, \delta_L, A_L \rangle$ given as follows.

$$Q_L = \{ [w]_{\preceq} \mid w \in \Sigma^* \}$$

$$q_L = [\epsilon]_{\preceq}$$

$$\delta_L([w]_{\preceq}, a) = [wa]_{\preceq}$$

$$A_L = \{ [w]_{\preceq} \mid w \in L \}$$

Then $L(M_L) = L$, and no automaton recognizing L can have fewer states.

Example of M_L

Let $L = \{ w \in \{0,1\}^* \mid w \text{ ends in 00} \}$. Then M_L looks like this.
Hmmm...

Is this an algorithm?
Constructive proofs need not be algorithmic.

Why is the Theorem True?

- What is $\delta^*_L(q_L, x)$?

 One can show by induction that it is $[x]_{L^*}$.

- When does M_L accept x?

 When $[x]_{L^*} \subseteq L$.

- Suppose $\delta^*_L(q_L, x) = \delta^*_L(q_L, y)$. What is the relationship between x, y?

 $x \equiv y$

- Suppose $\delta^*_L(q_L, x) \neq \delta^*_L(q_L, y)$. What is the relationship between x, y?

 $x \not\equiv y$

The first two points guarantee that $L(M_L) = L$; the last two ensure that no DFA for L can have fewer states (why?)!

Reviewing \lessapprox

- What does “$x \lessapprox y$” mean?

 That x and y are indistinguishable with respect to language L; that is, for any $z \in \Sigma^*$, $xz \in L \iff yz \in L$.

- Suppose $x \lessapprox y$ and $y \lessapprox z$. What can we say about x and z, and why?

 $x \lessapprox z$ because \lessapprox is an equivalence relation on $\Sigma^* \times \Sigma^*$.

- Suppose machine M and strings $x, y \in \Sigma^*$ are such that:

 Why is $x \lessapprox_{L(M)} y$?

 Because xz and yz will lead to the same state too, for any $z \in \Sigma^*$!

Reviewing \lessapprox (cont.)

- Suppose machine M and strings $x, y \in \Sigma^*$ are such that:

 $x \not\lessapprox_{L(M)} y$.

 Not necessarily.

- Suppose that $x \not\lessapprox y$ and that $M = \langle Q, \Sigma, q_0, \delta, A \rangle$ accepts L. Can $\delta^*(q_0, x) = \delta^*(q_0, y)$?

 No!

- What are the equivalence classes of \lessapprox when $L = \{ w \in \{0, 1\}^* \mid w$ has an even number of 1’s $\}$?

 One is L itself; the other is $\{ w \in \{0, 1\}^* \mid w$ has an odd number of 1’s $\}$.
A Minimum-State DFA for L

- If L is regular, what are the states of the minimum-state DFA M_L for L?

 The equivalence classes of \tilde{L}.

- Let L be regular, let $M_L = \langle Q_L, \Sigma, q_L, \delta_L, A_L \rangle$ be the minimum-state DFA for L, and let $x \in \Sigma^*$. What is $\delta_L^*(q_L, x)$? $[x]_{\tilde{L}}$, i.e. the equivalence class of L!

- Let L be regular, and let M_L be the minimum-state DFA M_L for L. What are the accepting states of M_L?

 The equivalence classes of elements of L.

Languages That Are Not Regular

Do nonregular languages exist?

Yes! Consider $L = \{0^n 1^n \mid n \geq 0 \}$.

- What would a “FA” look like for this language?

 ![DFA example]

 What can you say about the strings 0^i and 0^j if $i \neq j$?

 If $i \neq j$ then $0^i \not\in L \iff 0^j \not\in L$!

 In this case L has an infinite number of equivalence classes!

We will revisit this issue next lecture.

Minimizing DFAs

What we know:

For any regular language L there is a minimum-state DFA M_L with $L(M_L) = L$.

So any DFA for L must have at least as many states as M_L.

Question Suppose we have a DFA M for L. Is there a way to minimize M, i.e. generate the minimum-state DFA M_L by eliminating “unnecessary” states from M?

We’ll see....
Unnecessary States in DFAs

Certainly, unreachable states in DFAs are unnecessary:

\[\begin{array}{c}
A \ \ \ 0 \\
B \ \ \ 1 \\
C \ \ \ 0, 1 \\
\end{array} \]

In what follows we will assume these states have already been removed.

Other Unnecessary States: Preliminaries

In what follows, fix DFA \(M = (Q, \Sigma, q_0, \delta, A) \).

Definition Let \(q \in Q \). Then \(M_q \) is the DFA \((Q, \Sigma, q, \delta, A) \).

\(M_q \) is like \(M \) except that the start state has been changed to \(q \) from \(q_0 \):

What is \(\mathcal{L}(M_q) \)? The words leading from \(q \) to an accepting state in \(M \)!

Language Equivalence and States

Definition Let \(q_1, q_2 \in Q \). Then \(q_1 \sim M q_2 \) if \(\mathcal{L}(M_{q_1}) = \mathcal{L}(M_{q_2}) \).

\(q_1 \sim M q_2 \) holds if for all \(w \in \Sigma^* \), \(\delta^*(q_1, w) \in A \text{ iff } \delta^*(q_2, w) \in A \).

So either \(\delta^*(q_1, w) \in A \) and \(\delta^*(q_2, w) \in A \):

\[\begin{array}{c}
q_1 \sim M q_2 \\
\delta^*(q_1, w) \in A \\
\delta^*(q_2, w) \in A \\
\end{array} \]

or \(\delta^*(q_1, w) \not\in A \) and \(\delta^*(q_2, w) \not\in A \):

\[\begin{array}{c}
q_1 \not\sim M q_2 \\
\delta^*(q_1, w) \not\in A \\
\delta^*(q_2, w) \not\in A \\
\end{array} \]

Example for \(\sim M \)

Let \(M = (Q, \Sigma, \delta, q_0, A) \) be a DFA, and let \(q_1, q_2 \in Q \) be states.

Intuitively, \(q_1 \sim M q_2 \) holds if the states “accept” the same strings.

Example Consider the following \(M \).

\(A \sim M B \): every string leading from \(A \) to accepting state also leads from \(B \) to accepting state, and vice versa.

\(A \not\sim M C \): string 0 leads from \(A \) to rejecting state but from \(C \) to accepting state.
Relating \sim and $L(M)$

What happens if $\delta^*(q_0, x) \sim M \delta^*(q_0, y)$?
- This means for all $z \in \Sigma^*$, $\delta^*(q_0, xz) \in A$ iff $\delta^*(q_0, yz) \in A$, i.e.:

In other words, $xz \in L(M)$ iff $yz \in L(M)$!

Facts about \sim
- Let $x, y \in \Sigma^*$. Then $\delta^*(q_0, x) \sim M \delta^*(q_0, y)$ iff $x \in L(M) y$.
- $\sim M$ is an equivalence relation and thus has equivalence classes.
- If $q_1 \sim M q_2$ then $\delta(q_1, a) \sim M \delta(q_2, a)$ for any $a \in \Sigma$.
- In contrast with $\preceq M$, $\sim M$ is an equivalence relation over a finite set (Q) rather than an infinite one (Σ^*).

Constructing Minimum-State DFAs

The previous facts suggest a means for minimizing DFAs.
- “Collapse” $\sim M$ states into a single state
- “Merge” transitions.

Example

$\sim M$ equivalence classes: $\{A, B\}, \{C\}$

Minimized M
Merging Language-Equivalent States

We just established this:

Lemma Let $M = \langle Q, \Sigma, q_0, \delta, A \rangle$ be a DFA, and suppose that $q_1 \overset{M}{\sim} q_2$. Then for any $a \in \Sigma$, $\delta(q_1, a) \overset{M}{\sim} \delta(q_2, a)$.

We can now "merge" redundant states as follows!

Theorem Let $M = \langle Q, \Sigma, q_0, \delta, A \rangle$ be a DFA. Then the automaton $M_L = \langle Q_L, \Sigma, q_L, \delta_L, A_L \rangle$ given below is a minimum-state DFA accepting $L(M)$.

$$Q_L = \{ [q]_M \mid q \in Q \}$$

$q_L = [q_0]_M$

$\delta([q]_M, a) = [\delta(q, a)]_M$

$A_L = \{ [q]_M \mid q \in A \}$

Computing Equivalence Classes of $\overset{M}{\sim}$

In order to minimize DFAs mechanically, we need to be able to compute the equivalence classes of $\overset{M}{\sim}$ for a given DFA M.

This can be done using a *partition refinement* algorithm.

- We initially make crude assumptions about which states are related by $\overset{M}{\sim}$. (I.e. we assume a small number of large equivalence classes.)
- Based on an analysis of outgoing transitions, we may split some equivalence classes when they are found to contain states not related by $\overset{M}{\sim}$.
- When we can’t split any more, we’re done.

List of equivalence classes: *partition*.

Splitting equivalence classes: *refinement*.

The Initial Partition

Where do we start our partition-refinement algorithm? In other words, which states are guaranteed not to be $\overset{M}{\sim}$ related?

Claim If $q_1 \in A$ and $q_2 \not\in A$ then $q_1 \not\overset{M}{\sim} q_2$.

Why? Because $\epsilon \in L(M_{q_1})$ and $\epsilon \not\in L(M_{q_2})$!

So the partition refinement algorithm starts off with an initial partition containing two equivalence classes: A and $Q - A$.

Example

Initial partition: $\{6\}, \{1, 2, 3, 4, 5, 7\}$
Refining Partitions

Suppose \(q_1, q_2 \) are such that \(\delta(q_1, a) \not\sim_M \delta(q_2, a) \) for some \(a \in \Sigma \).

Then \(q_1 \not\sim_M q_2 \) (Why?)

This means that if we have an equivalence class (or block) \(B \) such that

- \(q_1, q_2 \) are in \(B \), but
- there is an \(a \) such that \(\delta(q_1, a) \) and \(\delta(q_2, a) \) are in different blocks,

then \(B \) should be split into two new classes: one containing \(q_1 \), and one containing \(q_2 \).

Splitting Blocks

More precisely, suppose we have:

\[
\begin{array}{c}
q_1 \quad q_2 \\
\end{array}
\]

That is, \(q_1, q_2 \in B \) and \(\delta(q_1, a) \in B' \) but \(\delta(q_2, a) \not\in B' \). Then \(B \) should be split into:

\[
\begin{align*}
B_1 &= \{ q \in B \mid \delta(q, a) \in B' \} \\
B_2 &= \{ q \in B \mid \delta(q, a) \not\in B' \}
\end{align*}
\]

Example

Initial partition: \{6\}, \{1, 2, 3, 4, 5, 7\}

In \(B = \{1, 2, 3, 4, 5, 7\} \):

- 3, 5, 7 have 0 transitions to \(B' = \{6\} \).
- 1, 2, 4 do not.

So \(B \) should be split into:

- \(B_1 = \{3, 5, 7\} \), and
- \(B_2 = \{1, 2, 4\} \).

New partition: \{6\}, \{3, 5, 7\}, \{1, 2, 4\}.

The Algorithm for Computing Equivalence Classes of \(\sim_M \)

- Start with partition \(\{A, Q - A\} \).
- While there is a block \(B \) that should be split, generate a new partition by replacing \(B \) with \(B_1 \) and \(B_2 \).
- Halt when no more splitting is possible.

It turns out that when the algorithm terminates, the blocks are exactly the equivalence classes of \(\sim_M \).

These can then be used to generated the minimized version \(M_L \) of \(M \).
Summary: Regular Languages...

- are defined using regular expressions
- are processed mechanically via DFAs/NFAs
- are closed with respect to \circ, \ast, \cup, complement, \cap, ...
- have a characterization in terms of equivalence classes of “indistinguishability”
- have minimum-state DFA acceptors