
CSC444

October 26, 2014

Contents

1 Review: Relations 1

2 State diagrams 2

3 Nondeterministic finite automata 3

3.1 An example . 3

3.2 Definition of NFA . 6

4 The relationship between DFA and NFA 8

4.1 The construction . 12

4.1.1 Unreachable states . 12

4.1.2 Example . 12

4.1.3 Example . 14

4.2 The formal proof . 15

1 Review: Relations

A binary relation on a set A is a subset of A× A.

1

Example 1.1. Let A = {1, 2, 3, 4} and R = {(1, 2), (1, 1), (3, 4), (4, 1)}.

Let A be a set. The following are two important properties a binary relation
R on A× A can have:

• R is reflexive if (a, a) ∈ R for each a ∈ A

• R is transitive if whenever (a, b) ∈ R and (b, c) ∈ R then (a, c) ∈ R

Definition 1.2. Let A be a set. The reflexive, transitive closure of
a relation R on A × A is the relation R∗ = { (a, b) ∈ A × A |
there is a path from a to b in R }.

Intuitively, R∗ is the smallest possible relation that contains all the pairs of
R and is reflexive and transitive.

Thus, to get R∗ from R we need to add in just enough arcs to get both
properties.

Example 1.3. Let A = {1, 2, 3, 4} and let R = {(1, 2), (2, 3), (2, 4), (3, 4)}.

2 State diagrams

Example 2.1. K = {q0, q1, q2, q3}, s = q0, F = {q0, q1, q2}

δ is given by the following table:

q σ δ(q,σ)
q0 0 q0
q0 1 q1
q1 0 q0
q1 1 q2
q2 0 q0
q2 1 q3
q3 0 q3
q3 1 q3

L(M) = {w | w does not contain three consecutive 1’s }

2

Note. Is it possible to leave state q3?

Definition 2.2. q3 is called a dead state and if M reached q3 it is said to be
trapped since no further input can cause it to escape from the state.

3 Nondeterministic finite automata

We now want to introduce a useful notational generalization of a determin-
istic finite automaton.

Recall. In the definition of a DFA we required that δ be a function, that
is, given an input symbol a ∈ Σ and a state q ∈ K, δ(a, q) is uniquely
determined.

We now introduce a new model very similar to a DFA except that δ is not
required to be a function.

Instead it will be a relation.

How does this change the model? Consider an example.

3.1 An example

Let’s suppose that we want to find a DFA M where L(M) is either {01}∗ or
{010}∗, that is, L(M) is either a string of 01’s or a string of 010’s.

How can we design an automaton to accept this language?

It would be easy enough if we were asked to construct an automaton accepting
either one:

• An automaton for {01}∗.

M1 = (K1, {0, 1}, δ1, s1, F1) where K1 = {q0, q1, q2, q3}, s1 = q0, F1 =
{q0, q3} and δ1 is given below:

3

q σ δ1(q,σ)
q0 0 q1
q0 1 q2
q1 0 q2
q1 1 q3
q2 0 q2
q2 1 q2
q3 0 q1
q3 1 q2

• An automaton for { 010 }*.

M2 = (K2, {0, 1}, δ, s2, F2) where K2 = {p0, p1, p2, p3, p4}, s2 = p0,
F2 = {p0, p4} and δ2 is given below:

q σ δ2(q,σ)
p0 0 p1
p0 1 p2
p1 0 p2
p1 1 p3
p2 0 p2
p2 1 p2
p3 0 p4
p3 1 p2
p4 0 p1
p4 1 p2

If we consider these automata “subrountines”, what we want, to answer the
original question, is an automaton that “calls” these two.

How can we do that?

Design a new start state s that on input 0 enters both q1 or p1 and on input
1 enters either q2 or p2 (but not both).

Draw the composite automaton M .

4

Observe that this automaton is not deterministic. There are two possible
transitions in the state s when reading a 0 or a 1.

A string is accepted by the automaton if there is some way to get from the
initial state s to a final state while following arrows labeled with the symbols
of the string.

Example 3.1. Let w = 01010. We can simplify this automaton if we do two
things:

• Remove the dead states

Just as we can have more than one transition with the same label out
of a state, we may have no transition with a given label out of a state.

• Use arrows labeled by the empty string ε.

If there is one of these transitions, called an ε-transition, between two
states q and p, then you can move from q to p without consuming any
input.

These can simplify M1, M2, and the composite automaton M as follows:

• The new M1.

K1 = {q0, q1, q3}, s = q0, F = {q0} and δ is given below:

q σ δ(q,σ)
q0 0 q1
q1 1 q3
q3 ε q0

• The new M2.

K2 = {p0, p1, p3, p4}, s = p0, F = {p0}, and δ is given below:

q σ δ(q,σ)
p0 0 p1
p1 1 p3
p3 0 p4
p4 ε p0

5

• The new M

K = K1 ∪K2 ∪ {s} where δ(s, ε) = {q0, p0}.

3.2 Definition of NFA

The generalization of finite automata we considered in the previous examples
is called a nondeterministic finite automaton (NFA).

Nondeterminism is the ability to change state in a way that is only partially
determined by the current state and the input symbol scanned.

Once nondeterminism is introduced, we have to change what we mean by
acceptance of a string by the finite automaton.

Definition 3.2. A nondeterministic finite automaton is a quintuple M =
(K,Σ,∆, s, F) where

• K is the set of states,

• Σ is the alphabet,

• s ∈ K is the starting state,

• F ⊆ K is the set of final states, and

• ∆ ⊆ K × (Σ ∪ {ε})×K is the transition relation.

Each triple (q, u, p) ∈ ∆ is called a transition of M .

If M is in state q and the next input symbol to be read is a then M may
follow any transition of the form (q, a, p) or (q, ε, p). If the latter is followed
then the reading head does not move and a remains the next input symbol.

As with DFA, we can formally define what it means for a NFA to accept a
string:

A configuration of M is again an element of K × Σ∗.

The relation 7→M (yields in one step) between configurations is given by:
(q, w) 7→M (q′, w′) iff ∃u ∈ Σ ∪ {ε}. w = uw′ and (q, u, q′) ∈ ∆.

Note. 7→M is a relation and not a function, meaning that for a given (q, w)
there may be several or no pairs (q′, w′) so that (q, w) 7→M (q′, w′).

6

7→∗

M
is the reflexive, transitive closure of 7→M , and a string w ∈ Σ∗ is accepted

by M iff there is a state q ∈ F s.t. (s, w) 7→∗

M
(q, ε).

As before the language accepted by M is L(M) = {w ∈ Σ∗ |
w is accepted by M }.

Example 3.3.

q σ ∆(q,σ)
q0 0 q0, q3
q0 1 q0, q1
q1 1 q2
q2 0 q2
q2 1 q2
q3 0 q4
q4 0 q4
q4 1 q4

L(M) = {w | w has either two consecutive 0’s or two consecutive 1’s }

Example 3.4. Let M be given by K = { q0, q1, q2 }, Σ = { 0,1,2 }, s = q0,
F = { q2 } with transition relation ∆ given below:

q σ ∆(q,σ)
q0 0 q0
q0 ε q1
q1 1 q1
q1 ε q2
q2 2 q2

L(M) = {0}∗{1}∗{2}∗

Example 3.5. Let Σ = {a1, ..., an} where n ≥ 2. Suppose we want to create
a NFA to accept the language L = {w | ∃i. ai does not appear in w }.

For example, If Σ = {a1, a2, a3} then a1a1a2 ∈ Σ but a1a2a3 /∈ Σ.

Intuitively, the NFA would work in the following manner:

7

• Guess the symbol ai that is missing from the input.

• If no symbol is missing, move to a dead state.

• If a symbol ai is missing, go to state qi.

• If in state qi you ever encounter ai, move to a dead state.

• Otherwise eat the remaining symbols and accept.

For the construction of the NFA we need one starting state q0, one state for
each symbol in the alphabet, q1, . . . , qn and a dead state qn+1.

There are ε-transitions from q0 into each of q1, . . . , qn, self-loops on each of
q1, . . . , qn labeled with the states that are legal, and a transition out of each
of q1, . . . , qn into qn+1 labeled with the illegal state.

Note. Assume that if you ever encounter a symbol and there is no arc leading
out of that symbol labeled with the current input symbol then the string is
automatically rejected.

4 The relationship between DFA and NFA

Fact 4.1. A DFA is just a special type of NFA.

This is because in a DFA the transition relation just happens to be a function.

More formally, a NFA is deterministic iff there are no transitions of the form
(q, ε, p)in∆ and for each q ∈ K and a ∈ Σ there is exactly one p ∈ K s.t.
(q, a, p) ∈ ∆.

Corollary 4.2. The set of languages accepted by DFA is a subset of the set

of languages accepted by NFA.

The surprising thing is that the reverse is also true.

The set of languages accepted by NFA is the same as the set of languages
accepted by DFA.

8

Note. It is important that we have not bounded the space needed by FA in
their definition or this would not be true. We will see that there are NFA
that are exponentially smaller than any equivalent DFA. (Size is measured
by the number of states of the FA).

Definition 4.3. Two finite automata M1 and M2 (deterministic or nonde-
terministic) are equivalent iff L(M1) = L(M2).

Theorem 4.4. For each nondeterministic finite automaton there is an

equivalent deterministic finite automaton.

We will prove this theorem by taking an arbitrary NFA, constructing an
equivalent DFA and then proving that what we did worked.

Key idea: At any point in time we will view a NFA as occupying not a single
state, but a set of states.

That set of states will be all states reachable from the initial state given the
input consumed so far.

If we force our DFA to keep track of these super-states then if we reach the
end of the string and our set of possible states includes at least one final
state, then the NFA would have accepted the string. Otherwise it would
have rejected the string.

Example 4.5. Consider the NFA from Example 1.

Substring read so far Set of possible states
1 { q0, q1 }
10 { q0, q3 }
100 { q0, q3, q4 }
etc. etc

Suppose that the NFA had n states to start out with. How many possible

states could a DFA constructed in this manner have?

The set of states of the DFA is simply all possible subsets of the NFA, that
is, the power set of the n states.

So the DFA can have as many as 2n states.

9

Let M = (K,Σ,∆, s, F) be an arbitrary NFA. The idea of the proof is to
construct a DFA M ′ = (K ′,Σ, δ′, s′, F ′) equivalent to M .

The set of states of M ′ will be K ′ = 2K , the power set of the set of states of
M .

The set of final states of M ′ will consist of all those subsets of K that contain
at least one final state of M .

Defining the transition function δ′ is more complicated, but the basic idea is
the following:

A move of M ′ on an input symbol a ∈ Σ simulates a move of M on input
symbol a, possibly followed by any number of ε-moves of M .

To formalize this we need a definition:

Definition 4.6. For any state q ∈ K, let E(q) be the set of all states of M
that are reachable from state q without reading any input.

So E(q) = { p ∈ K | (q, ε) 7→∗

M
(p, ε) }

Another way to state this is that E(q) is the closure of the set {q} under the
relation:

{ (p, r) | (p, ε, r) ∈ ∆ }

We can compute E(q) using the following algorithm:

• Initialize E(q) = {q}

• while ∃(p, ε, r) ∈ ∆. p ∈ E(q) and r /∈ E(q) do:

• E(q) ⇐ E(q) ∪ {r}

How much time does this algorithm take in the worst case?

Since there |K| states and one state is added at each step, it will terminate
after no more than |K| steps.

Example 4.7. Consider the NFAM given byK = {q0, q1, q2}, Σ = {0, 1, 2},
s = q0, F = {q2} with transition relation ∆ given below:

10

q σ ∆(q,σ)
q0 0 q0
q0 ε q1
q1 1 q1
q1 ε q2
q2 2 q2

Recall. L(M) = {0}∗{1}∗{2}∗.

E(q0) = {q0, q1, q2}, E(q1) = {q1, q2} and E(q2) = {q2}.

We can now formally give the DFA M ′.

Let M = (K,Σ,∆, s, F) be an arbitrary NFA. We will construct a DFA
M ′ = (K ′,Σ, δ′, s′, F ′) equivalent to M . The DFA M ′ is given by:

• K ′ = 2K ,

• s′ = E(s),

• F ′ = {Q ⊆ K | Q ∩ F 6= ∅ }, and

• For each Q ⊆ K and each symbol a ∈ Σ, define δ′(Q, a) = ∪{ E(p) |
p ∈ K and (q, a, p) ∈ ∆ for some q ∈ Q }

Thus, δ′(Q, a) is the set of all states of M to which M can go by reading
input a, possibly following some ε-transitions.

Example 4.8. Consider the NFA M given in the last example.

δ′({q0}, 0) = E(q0) = {q0, q1, q2}.

If we added an arc from q0 to q1 with label 0, then δ′({q0}, 0) = E(q0)∪E(q1) =
{q0, q1, q2}.

We still have to show that M ′ is deterministic and equivalent to M .

We will show thatM ′ is equivalent toM after we understand the construction
presented better.

11

4.1 The construction

The formal proof of correctness for the construction makes more sense if you
have seen an example.

This is because the proof that any NFA has an equivalent DFA is constructive,
which means that it not only tells you that an equivalent DFA exists, but it
also gives an algorithm for finding one.

4.1.1 Unreachable states

If we are constructing an equivalent DFA M ′ for an NFA M with n states,
the set of possible states for M ′ has size 2n.

Some of these states, however, may have no effect on the computation of M ′.

This is because any state that is not reachable from the starting state s′ of
M ′ is irrelevant.

We will ensure that when we apply the algorithm, we will only build the
reachable states into the DFA.

This is done by:

• Creating the appropriate starting state s′ for the DFA M ′

• Adding a new state only when it is needed as the value of δ′(q, a) for
some state q ∈ K ′ already introduced and some a ∈ Σ

4.1.2 Example

Consider the NFA M given by K = {q0, q1, q2}, Σ = {0, 1, 2}, s = q0, F =
{q2} with transition relation ∆ given below:

q σ ∆(q,σ)
q0 0 q0
q0 ε q1
q1 1 q1
q1 ε q2
q2 2 q2

12

Recall. L(M) = 0∗1∗2∗.

To construct a DFA M ′ equivalent to M we need to determine E(q) for each
q ∈ K.

E(q0) = {q0, q1, q2}

E(q1) = {q1, q2}

E(q2) = {q2}

The starting state s′ of M ′ is E(s) = E(q0) = {q0, q1, q2}.

All the transitions (q, 0, p) for some q ∈ s′ s.t. (q0, 0, q0)

All the transitions (q, 1, p) for some q ∈ s′ s.t. (q1, 1, q1)

All the transitions (q, 2, p) for some q ∈ s′ s.t. (q2, 2, q2)

δ′(s′, 0) = E(q0) = {q0, q1, q2}

δ′(s′, 1) = E(q1) = {q1, q2}

δ′(s′, 2) = E(q2) = {q2}

Repeat this process for each new state introduced in the last step:

δ′({q1, q2}, 0) = ∅

δ′({q1, q2}, 1) = E(q1) = {q1, q2}

δ′({q1, q2}, 2) = E(q2) = {q2}

δ′({q2}, 0) = ∅

δ′({q2}, 1) = ∅

δ′({q2}, 2) = E(q2) = {q2}

We now have to repeat the process for the new state introduced:

δ′(∅, 0) = δ′(∅, 1) = δ′(∅, 2) = ∅

The resulting DFA M ′ has K ′ = {{q0, q1, q2}, {q1, q2}, {q2}, ∅}, s′ =
{q0, q1, q2}, F = {{q0, q1, q2}, {q1, q2}, {q2}} and transition function δ′ given
below:

13

q σ δ′ (q,σ)
{ q0, q1, q2 } 0 { q0, q1, q2 }
{ q0, q1, q2 } 1 { q1, q2 }
{ q0, q1, q2 } 2 { q2 }
{ q1, q2 } 0 ∅
{ q1, q2 } 1 { q1, q2 }
{ q1, q2 } 2 { q2 }
{ q2 } 0,1 ∅
{ q2 } 2 { q2 }
∅ 0,1,2 ∅

4.1.3 Example

Let Σ = {a1, ..., an} where n ≥ 2. Suppose we want to create a NFA to
accept the language L = {w | ∃i. ai /∈ w }.

Sample: If Σ = {a1, a2, a3} then a1a1a2 ∈ Σ but a1a2a3 /∈ Σ.

Intuitively, the NFA would work in the following manner:

• Guess the symbol ai that is missing from the input.

• If a symbol ai is missing, go to state qi.

• If in state qi you ever encounter ai, reject

• Otherwise consume the remaining symbols and accept.

For the construction of the NFA we need one starting state q0 and one state
for each symbol in the alphabet, q1, . . . , qn.

There are ε-transitions from q0 into each of q1, . . . , qn, and self-loops on each
of q1, . . . , qn labeled with the states that are legal.

What happens when we use the construction to produce a DFA accepting
this language?

The equivalent DFA M ′ has initial state s′ = E(q0) = {q0, q1, q2, q3, ..., qn}.

Good news : Half of the possible states of M ′ are irrelevant and do not need
to be used.

14

This includes:

• The state {q0} since it cannot be reached from s′

• Any state that contains some qi for i 6= 0 but not q0.

Bad news : Half of the possible states of M ′ are necessary.

All the states of the form {q0} ∪ Q for some non-empty subset Q of
{q1, q2, ..., qn} are reachable from s′

The depressing fact : No amount of optimization will eliminate any more
states. The equivalent DFA requires 2n states.

This is simply a language that does not have a small, equivalent DFA.

4.2 The formal proof

We now show that the DFA M ′ is equivalent to the original NFA M , thus
completing the proof of the theorem. We do so by proving the following
claim.

Claim 4.9. For any string w ∈ Σ∗ and any states p, q ∈ K, (q, w) 7→∗

M
(p, ε)

iff (E(q), w) 7→∗

M ′ (P, ε) for some set P containing p.

Claim ⇒ Theorem. Why?

To show that M and M ′ are equivalent, consider any string w ∈ Σ∗.

w ∈ L(M) iff (s, w) 7→∗

M
(f, ε) for some f ∈ F (by definition) iff

(E(s), w) 7→∗

M ′ (Q, ε) for some Q containing f (by the claim).

This means that w ∈ L(M) iff (s′, w) 7→∗

M ′ (Q, ε) for some Q ∈ F ′. The
latter condition is simply the definition of w ∈ L(M ′).

Proof. By induction on |w|.

Base: For |w| = 0, that is, w = ε, we must show that (q, ε) 7→∗

M
(p, ε) iff

(E(q), ε) 7→∗

M ′ (P, ε) for some set P containing p.

⇒ Suppose (q, ε) 7→∗

M
(p, ε). Then p ∈ E(q) by definition of E(q). So

(E(q), ε) 7→∗

M ′ (P, ε) for P = E(q).

15

⇐ Suppose (E(q), ε) 7→∗

M ′ (P, ε) for some set P containing p. Then since M ′

is deterministic, P = E(q). So p ∈ E(q). Thus (q, ε) 7→∗

M
(p, ε).

Inductive hypothesis : Suppose that the claim is true for all strings w of length
k or less for some k ≥ 0.

Inductive step: We will prove the claim for any string w of length k+1. Let
w = va where a ∈ Σ and v ∈ Σ∗.

⇒ Suppose that (q, w) 7→∗

M
(p, ε). Then there are states r1 and r2 s.t.

(q, w) 7→∗

M
(r1, a) 7→M (r2, ε) 7→

∗

M
(p, ε)

Now (q, va) 7→∗

M
(r1, a) means that (q, v) 7→∗

M
(r1, ε). Since |v| = k, by the

inductive hypothesis, (E(q), v) 7→∗

M ′ (R1, ε) for some set R1 containing r1.

Since (r1, a) 7→M (r2, ε) there is a triple (r1, a, r2) ∈ ∆, and thus by the
construction of M ′, E(r2) ⊆ δ′(R1, a).

But since (r2, ε) 7→∗

M
(p, ε), it follows that p ∈ E(r2) and therefore p ∈

δ′(R1, a).

Thus (R1, a) 7→M ′ (P, ε) for some P containing p, and thus (E(q), va) 7→∗

M ′

(R1, a) 7→M ′ (P, ε) as required.

⇐ Suppose that (E(q), w) 7→∗

M ′ (P, ε) for some set P containing p.

This is equivalent to saying that (E(q), va) 7→∗

M ′ (R1, a) 7→M ′ (P, ε) for some
P containing p and some R1 s.t. δ′(R1, a) = P .

By definition of δ′, δ′(R1, a) is the union of all sets E(r2) where for some state
r1 ∈ R1, (r1, a, r2) is a transition of M .

Since p ∈ P = δ′(R1, a), there is some r2 s.t. p ∈ E(r2), and, for some
r1 ∈ R1, (r1, a, r2) is a transition of M .

Then (r2, ε) 7→
∗

M
(p, ε) by the definition of E(R2). By the inductive hypoth-

esis, (q, v) 7→∗

M
(r1, ε).

Therefore, (q, va) 7→∗

M
(r1, a) 7→M (r2, ε) 7→∗

M
(p, ε) which means that

(q, w) 7→∗

M
(p, ε) as required.

This proves the claim and the theorem. ? �

16

	Review: Relations
	State diagrams
	Nondeterministic finite automata
	An example
	Definition of NFA

	The relationship between DFA and NFA
	The construction
	Unreachable states
	Example
	Example

	The formal proof

