1 Introduction

The title of this course is “Automata Theory and Formal Grammars”.

This is an apt description since the purpose of the course is to discuss:

o Finite automata, regular expressions, the relationship between the two
models, and the limitations of the models.

e Context-free grammars, pushdown automata, the relationship between
the two models, and the limitations of the models.

All of these models are formalizations of computing devices.

1.1 Computing devices

Informal defn: A computing device is a machine that takes input, processes
that input, and produces a resulting output and/or action.

Some common computing devices include:

e Computer

o Calculator

CSC444

October 26, 2014

Contents

[L3_ Finite state machined 5
7
7

A hie eld ..o 9
[2_Mathematical foundations 10
Bl Tangmaged 10

Processing: Evaluate the numerical expression by applying the func-
tions to the values

Output: The final value of the numerical expression

Combination lock
Input: A sequence of numbers and directional information

Processing: Match each number and direction with the lock’s combi-
nation

Qutput: Unlock or no action

Elevator
Input: A sequence of floor requests, directional information

Processing: Make passes up and down the building to fulfill the re-
quests; when possible, fulfill the requests in a FIFO manner

Output: A fulfilled request; a pass through the building

Vending machine
Input: Money or smart card, information about buttons/levers

Processing: Count money inserted and/or debit the smart card; com-
pare against the amount needed for the item desired

QOutput: Ttem desired, change

Thermostat
Input: Building temperature(s), desired temperature(s)
Processing: Compare current temperature(s) with desired tempera-
ture(s)
Qutput: Increase or decrease the work of the ventilating system; make
no changes

‘While instructive, these descriptions are somewhat imprecise.
Examples 1.2.

e How would a vending machine handle giving change when a customer
inserts more than is necessary for an item?

4

e Combination lock
e Elevator
e Vending machine

e Ventilation system thermostat
The mechanical details of each example varies significantly:

e Levers: Vending machine
e Circuits: Computer, calculator, elevator, thermostat, vending machine
e Tumblers: Combination lock
e Sensors: Vending machine, thermostat, elevator, computer
But we do not need to know how each device is built in order to understand
it.

Example 1.1. Very few of us know how elevators are constructed, yet we
use them every day to get to class and/or work.

It is often more instructive to find an abstract way to describe the behavior
of the device.

Using this abstraction we can understand the device’s behavior as well as
compare its behavior to other similar devices, all without knowing the details
of its construction.

1.2 Sample abstractions

Let us find some more abstract descriptions for the computing devices we
have mentioned so far.

Calculator

Input: A numerical expression, that is, a combination of numbers and
function symbols

o Needs $0.10: After 4 nickels, 2 dimes or a dime and 2 nickels have been
input

e Needs $0.05: After 5 nickels, or 2 dimes and a nickel, or 1 dime and 3
nickels or a quarter have been input

o Needs $0.00: After at least $0.30 has been input
Two of these states are special:

e The machine starts in the initial state, that is, the “Needs $0.30” state
e The machine will release a newspaper only when it is in the accepting
state, that is, the “Needs $0.00” state
1.3.1 Graphical representation
A finite state machine can be represented in a graphical form.
The representation:
e Each state corresponds to a circle. A label indicates what state is
represented by the circle.
e The initial state is represented by an arrow.
e The accepting state is indicated by double lines.
o Lines with arrows are used to indicate how to move from state to state.
Example 1.3. Draw the state diagram for the vending machine.

To understand the representation, consider a few sample computations:

e Input: Nickel, dime, dime, nickel

e Output: Newspaper is available

e Input: Quarter, nickel, quarter

e Which method would be used by the calculator to determine the prece-
dence of operations for the numerical expression?

‘We need to use mathematics to ensure that our descriptions are both abstract
(do not depend on the implementation of the device) and precise (have few,
if any, ambiguities).

1.3 Finite state machines

To introduce finite-state machines, consider the example of a simple news-
paper vending machine.
Rules for the newspaper vending machine:

e The cost of the newspaper is $0.30

e The machine accepts nickels, dimes, and quarters

e Once $0.30 has been inserted, the lid can be lifted and the newspaper
removed

o If more than $0.30 is inserted, the extra money will be lost

All finite-state machines, including our vending machine, record information
about the world using a set of states.

In particular, the newspaper vending machine will use a set of states to record
how much money remains to be inserted before the lever will be released and
the newspaper can be removed.

Thus, the newspaper vending machine states are:
o Needs $0.30: Before any coins are input
o Needs $0.25: After a nickel has been input
o Needs $0.20: After two nickels or a dime have been input.

e Needs $0.15: After 3 nickels, or a dime and a nickel have been input

e ()) : not balanced
Consider the following algorithm:

1. Initialize a counter to 0

2. Increment the counter when a left parenthesis is read.
3. Decrement the counter when a right parenthesis is read.
4. Repeat until one of the following conditions occurs:

(a) If the counter becomes negative, output “not balanced”.

(b) If the expression is completely read, do one of the following:
i. If the counter is zero, output “balanced”
ii. If the counter is non-zero, output “not balanced”

Why can we not design a finite-state machine for this algorithm?

Evaluating the expression may require us to store a value as large as half the
number of total parentheses before making a decision. (Actually, as large as
log n where n is the number of parentheses, but the same argument holds

)
Example 1.5. ((((((((CO))))))

Since the number of parentheses is arbitrary, a machine with a fixed number
of states cannot do this.

1.4.2 An extension

However, if we make one minor modification to the finite-state model, we can
solve the problem. Suppose that our finite-state machine is allowed access to
a stack of finite, but arbitrary, depth. As the machine changes state it can
push items onto the stack or pop items off the stack. The machine, however,
only has access to the top of the stack. It cannot “peek” into the middle.

A pushdown automaton is a finite automaton (i.e. finite-state machine) that
has a stack as auxiliary storage.

To solve the balanced parentheses problem:

8

e Output: Newspaper is available

e Input: Nickel, nickel, dime

e Output: Newspaper is not available

1.3.2 Issues

There are two issues that we did not address in our example. First, we do not
allow our vending machines to make change. This is a rather user-unfriendly
thing to do. However, allowing the machine to make change complicates the
design of the automaton. We will not consider it now.

Second, we cannot produce a finite-state machine for all of the sample devices
we discussed earlier. In particular, a calculator cannot be implemented this
way. The model is not powerful enough. The issue here is that finite-state
machines cannot represent devices that must remember an arbitrary amount
of information. Since there is no fixed bound on the size of arithmetic ex-
pressions, a calculator cannot be constructed this way.

1.4 Pushdown automata
To motivate the next more powerful machine beyond finite-state machines,
consider the problem of determining whether an arithmetic expression has a
balanced set of parentheses.
1.4.1 Balanced parentheses
Suppose that we wish to check whether the parentheses in an arithmetic
expression are balanced, that is, there are as many left parentheses as right
parentheses.
Examples 1.4.

e ((0(())) : balanced

e ((()0) : not balanced

The problem is that anything we can manage to describe finitely will “miss”
the vast majority of languages.

What do we mean by a finite description?

e We must be able to write it down in a finite amount of time, thus it
must be a string over some alphabet

e Different languages must have different representations or we have not
captured the essence of the language

‘We can certainly achieve the above for any finite set, since all we have to do
is list out all the strings in the language. The tricky part is trying to find
specifications for infinite languages.

We won’t use the fact that we have “missed” languages very much, but in
544 it will be used to find a set missed by all representations introduced in
both courses.

2 Mathematical foundations

The purpose of this course is to investigate the power of and relationship
between several fundamental models of computation.

‘We will do that by formally defining those models and then using mathemat-
ics to reason about the expressiveness and limitations of the result.
2.1 Languages

In this course we will measure the power of a model by the set of languages
it accepts or recognizes.

‘We will define what we mean by accepting or recognizing a language as we
encounter each new model, but for now let’s consider what we mean by
languages.

Definition 2.1. A language is a set of strings over a given alphabet.

Let’s briefly review what we know (or should know) about sets.

10

—-

. Start with an empty stack.

I

‘Whenever a left parenthesis is read, push a “+” symbol onto the stack.

bl

Whenever a right parenthesis is read, pop a “+” symbol off the stack.

~

Continue until one of the following conditions is met:

(a) An attempt is made to pop an empty stack. Output “not bal-
anced”.

(b) The input is empty, but the stack is not. Output “not balanced”.
(c) The input is empty, and the stack is empty. Output “balanced”.

1.5 The course
What will we do in this course?

e Learn about each of the models previously mentioned.

e Characterize the relationship between each model in a formal way.
A lesser priority:

e Discuss applications of these models.

e Implement Finite State Automata.

1.5.1 A hierarchy of models

This course will introduce several ways of describing and representing lan-
guages. As we introduce a new method we will show that either:

o It is strictly more powerful that the representations we have seen before
in the sense that it can describe everything the old method could plus
at least one language the old method could not; or

o It has the exzact same expressibility as a representation we've already
seen.

o siif
e 010101110

As we can note above, strings are written without the use of brackets or
commas, with the letters simply placed one after another

Notation. The length of a string is the length of its sequence of characters.
If w is a string, the length of w is denoted |w|.

The empty string, usually denoted by £, (sometimes denoted A or A) is the
empty sequence, that is, the unique string of length 0.

The set of all strings, including the empty string, over a given alphabet £
is denoted by X*. The set of all strings of length < n for some integer n is
denoted by ¥=", and the set of all strings of length exactly n is denoted by
=,

Note. The characters may be duplicated
Examples 2.8.

o [sour| =4

o [siif| =3

o [010101110] = 9

o lcl=0

In a slight abuse of notation, we will sometimes treat the name of a string
as a function from the integers to alphabet symbols.

Example 2.9. If w = sour then

2.2 Sets

Definition 2.2. A set is a collection of objects. The objects comprising a
set are called its elements or members.

Examples 2.3.

e months = { January, February, ..., December }

e N=1{0,1,2,..}

e even =

2 € N| and z is divisible by 2 }

You should know the following symbols and their meanings: €, ¢, C, C, ¢

You should also be familiar with the basic set operations of union, intersec-
tion, and difference and know what it means for two sets to be disjoint.
2.3 Alphabets and strings
Definition 2.4. An alphabet is a finite set of symbols.
Examples 2.5.

e {ab ...z}

e {ab ... ,24061iB8}

e {01}

Alphabets are usually denoted by X. Often the alphabet will be understood
from context.

Definition 2.6. A string over an alphabet is a finite sequence of symbols
from the alphabet.

Examples 2.7.

e sour

2.4 Induction
As a review, a proof by induction, has three parts:

e A basis step
e An inductive hypothesis
e The inductive step

If this doesn’t bring back lots of memories. please talk to me for references.

‘We will do proof by induction in this course, but more commonly we will use
a form of definition that uses induction.
2.4.1 Definition by induction

Definition 2.13. For each string w and each natural number i, the string
w' is defined as:

o uw'=¢

o wit! = w . w for each i > 0
Example 2.14. Let w = he

o w'=he

o w? = hehe

o w' = hehehehe

In a definition by induction we have two parts: one (or more) basis cases and
then one (or more) inductive parts.

You've probably already seen a definition by induction and not called it that.

Example 2.15. The i Fibonacci number f(i)
o f(0)=0

14

Question 2.10.
Is this function necessarily one-to-one?

Review: A function f: A — B is one-to-one if for any two distinct elements

a,d €A, f(a) # f(d).

Answer 2.11.
No. If w = 010101110 then w(1) = w(3) = w(5) = w(9) = 0.

If a string has duplicated symbols, each duplication will be referred to as an
occurrence of the symbol.

Two strings can be concatenated to form a third. We denote the concatena-
tion operator by -

Examples 2.12.
e 00111100 = 00111100
o fuzzy - kitty = fuzzykitty
e ¢ w = w, for any string w
Notation. We will write 2y to represent z -y
Other terminology:
e v is a substring of a string w if there are strings « and y s.t. w = zvy
e if w = uv for some string u then v is a suffiz of w
e if w = uw for some string v then u is a prefiz of w
Degenerate cases:
e c is a substring of any string
e Any string is a substring of itself
e ¢ is a prefix and suffix of any string

e Any string is a prefix and suffix of itself

13

2.5.1 Set operations on languages
Since languages are sets, they can be combined using set operations.

Notation. When the alglabet ¥ is understood from context, we will write
the complement of A as A instead of ¥* — A.

Certain operations apply only to languages:

Concatenation

If Ly and L, are languages over ¥ then L = LyLy where L = {w €
¥ |w=uxy forsome z € Ly and y € Ly }

Examples 2.19. Let ¥ = {0,1} and let L; = {w € %* |
|w|is even} and Ly = {w e ¥ | |w|is odd }.

e L=ILly=1L,
e L=LLi=1
e L=ILyly=1L—¢

Kleene star
Given a language L, L* is the language that results from concatenating
zero or more strings from L.
More formally, L* = {w € & | w = wy..wy for some k > 0 and some wy,
Examples 2.20.
o L={0,1}'01{0,1}* = {w € {0,1}* | w contains the substring 01 }
o 00 = {c}
Notation. L™ = LL*

What is the difference between L* and L*?

. =1
o J(i)=Ji—1)+ f(i—2) fori>2
Let’s do another definition by induction.
Definition 2.16. The reversal of a string w, denoted w™, is:
o if jw| = 0 then w® =w=¢
o if |w| =n+ 1, for n > 0, then w = ua for some a € ¥ and w® = au®

Less formally, the reversal of a string is the string “spelled backward”.

Definitions by induction lend themselves very well to proofs by induction.

2.5 Languages
Definition 2.17. A language is a set of strings over a given alphabet X,

that is, a subset of X*.

Since a language is simply a set, we can specify a finite language by listing
all of its strings.

However, most languages are infinite, so we must find a shorthand way to
represent the language.

‘We will typically specify languages using the following form:

L = {w € S* | w has property P}
Examples 2.18.

o {we {0,1}" | w has at least one 0 }

o {we {a,e,i,o,u}” | wis an English word }

owp € LY.

Definition 2.24. Let A be a set. The reflexive, transitive closure of
a relation R on A x A is the relation R* = {(a,b) € A x A |
and there is a path from a to bin R}.

Intuitively, R* is the smallest possible relation that contains all the pairs of
R and is reflexive and transitive.

Thus, to get R* from R we need to add in just enough arcs to get both
properties.
Example 2.25. Let A ={1,2,3,4} and let R = {(1,2),(2,3),(2,4).(3.4)}.

Then R* = {(1,1),(1,2),(1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)}.

3 Deterministic finite automata

‘We now introduce the first model of computation we will consider, that of a
deterministic finite automaton.

3.1 Basic operation

A finite automaton (FA), like all other models we will consider in the course,
takes strings as input.

The input string is written on an input tape.

The tape is divided into squares, and each square contains a single character
from a specified alphabet.

Computation is done according to the finite control.
e Inside the finite control, information is recorded using a set of states.
e The finite control can access the input via a movable reading head.
Initially the reading head is at the first tape square, and the finite control is

in a specified initial state.

At regular intervals the automaton:

18

2.6 Relations

Definition 2.21. An n-ary relation on sets Ay, ..., A, is a subset of A; x
Ay X .. x A,. A 2-ary relation is called a binary relation.

Examples 2.22. Let A = {1,2,3,4} and consider binary relations on A x A

o Ri= {(12).(L1), (3.4). (4,1)}
o Ry ={(1,4),(3,4),(2,2)}
o Ry ={(1,1),(1,2),(2,1),(3,4)}
You can associate a directed graph with a binary relation R on a set and

itself. You do this by drawing a node for each element in the set and then
drawing an arc from one node a; to another node as if (a1, a2) € R.

Let A be a set. The following are several important properties a binary
relation R on A x A can have:

e Ris reflezive if (a,a) € R for each a € A
e Ris symmetric if (a,b) € R implies that (b,a) € R
e Ris transitive if whenever (a,b) € R and (b,c) € R then (a,c) € R

Definition 2.23. A relation that is reflexive, symmetric and transitive is
called an equivalence relation.

Each of the three properties above has a graphical interpretation.

Reflexive Each node has a self-loop

Symmetric Either two nodes are unrelated or there is an arc in both direc-
tions between them

Transitive Whenever there is a way to get from node a; to node a, then
there is a direct arc from a; to as

17

3.3 Computation of a FA
The computation of a FA consists of a sequence of configurations that rep-
resent the status of the machine at successive moments.

Things to keep track of:

e Finite control

e Reading head

e Input tape
Note. Since the FA cannot move its reading head left, the part of the input
tape that has already been viewed cannot affect the future computation.
Thus the configuration of a FA is determined by the current state of the finite
control and the unread part of the input tape.
Definition 3.2. A configuration of a DFA M = (K, X, d,s, F) is any element
of K x %"
Note. The configuration (g, ¢) signifies that the FA has viewed all the input

and is in state ¢.

Consider a binary relation +y; that holds between two configurations of M
iff the machine can pass from one configuration to the other as a result of a
single move.

More formally, if (¢,w) and (¢’,w') are two configurations of M, then
(g, w) =ar (¢, w") iff w = aw' for some symbol a € ¥ and §(g,a) = ¢'.

In this case, we say that (¢, w) yields (¢, w’) in one step.

Note that s is in fact a function on K x 7 to K x X* since every config-
uration except the one with input string & has a uniquely determined next
configuration.

Let —7, be the reflexive, transitive closure of — ;.

Then (q,w) —3; (¢',w') is read as (g, w) yields (¢',w') (after some number,
possibly zero, of steps).

20

e Reads the character at the end of the reading head;

e Enters a new state based on its current state and the character it just
read;

e Moves the reading head one square to the right.
This process is repeated until the tape-head reaches the end of the input
string.

Once the input has been read, the FA accepts the string it has just read if
it is in one of the accepting states. Otherwise it rejects (or does not accept)
the string.

The language accepted by the FA is the set of strings that cause it to enter
the accepting state.

3.2 Definition

Definition 3.1. A deterministic finite automaton (DFA) is a quintuple M =
(K, %, 6, s, F) where

e K is a finite set of states,

e Y is a finite alphabet,

e s € K is the initial state,

e ' C K is the set of final states, and

e §: K x ¥ — K is the transition function.

The rules by which M chooses the next state are encoded in the transition
function.

If M is in state ¢ € K and the symbol read from the input tape is a € X,
then 6(¢q.a) € K is the uniquely determined state that M enters next.

Note. This definition is for a deterministic finite automaton because 9 is a
function, and not a relation. We'll contrast that with a non-deterministic
finite automaton later.

19

q [0(q,0)
9o 0 q
Yo 1 D
1 0 Yo
@ 1 o)

L(M) ={w||w|is even }
What would M’ look like so that £(M') = {w | |w] is odd }?

Example 3.7. K = {qo.q1. ¢, @3}, s = qo. F = {2}, and 4 is given by the
following table:

q [0(q.0)
o 0 Q@
Yo 1 92
D 0 Y
D L a3
92 0 s
Y2 1 Yo
a3 0 2
a3 1 Q
qo = “even 1’s, even q = “odd 0’s, even @2 = “even 0’s, odd 1's”,

g3 = “odd 1’s, odd 0’s

L(M) = {w | whas an even number of 0’s and an odd number of 1's }

‘What other languages could we compute if we change M slightly?

Definition 3.3. A string w € ¥* is said to be accepted by a FA M iff there
is a state ¢ € F s.t. (s,w) =}, (¢.€).

Definition 3.4. The language accepted by a FA M is the set of all strings
accepted by M.

3.4 State diagrams

Before we do some examples to clarify these definitions, it is helpful to in-
troduce a more graphical representation for FA.

A state diagram for a FA is a digraph with certain additional information.
The states of the FA are represented by nodes, and there is an arc labeled
with a from state ¢ to state ¢’ whenever §(g,a) = ¢'.

Final states are indicated by double circles, and the initial state is indicated
using a bracket.

3.5 Sample finite automata

Let ¥ = {0,1} in the following examples.

Example 3.5. K = {qo,¢1}, s = q. F = {@}, and ¢ is given by the
following table:

q o 0(q,0)
D 0 [
do 1 o
a 0 q
D 1 Yo

L(M) ={w|wendsin0}

Example 3.6. K = {q.q1}, s = @, F = {q}., and § is given by the
following table:

qo = “even”, q; = “odd”

21

	Introduction
	Computing devices
	Sample abstractions
	Finite state machines
	Graphical representation
	Issues

	Pushdown automata
	Balanced parentheses
	An extension

	The course
	A hierarchy of models

	Mathematical foundations
	Languages
	Sets
	Alphabets and strings
	Induction
	Definition by induction

	Languages
	Set operations on languages

	Relations

	Deterministic finite automata
	Basic operation
	Definition
	Computation of a FA
	State diagrams
	Sample finite automata

