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1 Introduction

The context of this paper is enlarging the scope of foundational, language-based secu-
rity methods (see [31,19,3] for surveys) to the realm of programming role-based ac-
cess control (RBAC). Our investigations are motivated by extant mechanisms that permit
components to express a form of role constraints on clients enabling the designer to aid
in access control — e.g. Java Authentication and Authorization Service (JAAS), .NET
and SELinux already permit programmatic use of role-based access control. Thus, this
paper falls squarely in the corner of the programmatic implementation and enforcement
of security policies, rather than the specification of security policies.

The main motivation for RBAC, e.g. see [29], in software architectures is that it en-
ables the enforcement of security policies at a granularity demanded by the application.
Roughly speaking, roles are the unit of administration for users and privileges are as-
signed to “roles”. Roles are often arranged in a hierarchy for succinct representation of
the mapping of privileges to facilitate the desired implementation of the “Principle of
Least Privilege” [28]. This argument is supported by diverse applications, e.g. [24,23].

EXAMPLE 1. In traditional UNIX systems the root user and the programs that run as
root (“setuid” programs [25,8]) are all-powerful. More modern Solaris systems [33] al-
low a user to assume a role that provides only some of superuser’s capabilities. For ex-
ample, the system administrator role has the solaris.admin.usermgr.read and the solaris.
admin.usermgr.write authorizations for making changes to user files. However, without
the solaris.admin.usermgr.pswd authorization, the system administrator cannot change
passwords.

The Solaris role hierarchy provides an explicit model for the ability to delegate
roles. An authorization that ends with the suffix grant enables a user or a role to delegate
to other users any assigned authorizations that begin with the same prefix. For example,
a role with the authorizations solaris.admin.usermgr.grant and solaris.admin.usermgr.
read can delegate the solaris.admin.usermgr.read authorization to another user. �

Our contributions. We initiate the study of RBAC in the programming language setting
by studying a small lambda calculus, λ-RBAC that embodies the key features of RBAC.
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What is the expressiveness that is required of a programming language framework
that supports RBAC? We draw inspiration from the programming idioms in extant ar-
chitectures such as JAAS and .NET — for completeness, appendix A contains code
excerpts exemplifying the arguments made in the rest of this paragraph. In these frame-
works, program execution takes place in the context of a role, which can be viewed
concretely as a set of permissions. Roles are closed under union and intersection oper-
ations. There are combinators to check that the role-context is at least some minimum
role: an exception is raised if the check fails. In the .NET framework, rights modu-
lation is achieved via a technique called impersonation: this enables an application to
operate under the guise of different users at different times. In this light, example 1
can be viewed as providing a grant role constructor (written in suffix in this example)
standing for the rights to enable impersonation.

These observations inspire the design of λ-RBAC. We study a call-by-value lambda
calculus where execution occurs in the context of a role. We assume that roles form a lat-
tice: abstracting the concrete union/intersection operations of the motivating examples.
Our study is parametric on the underlying role lattice. Our calculus includes combina-
tors for role checks. We separate the impersonation combinators into two pieces: one
for rights weakening and the other for rights amplification. Inspired by example 1, we
internalize the right to amplify rights by considering role lattices with an explicit role
constructor, amplify.

We demonstrate the expressiveness of the calculus by building a range of useful
combinators and a variety of small illustrative examples. We consider two kinds of
static analysis.

– Analysis to determine a (minimal) role that is guaranteed to run a piece of code
without role-errors.

– Analysis to determine the (maximal) role that is guaranteed to be required by a
piece of code.

The first analysis enables removal of unnecessary role-checks in a piece of code for a
caller at a sufficiently high role. The second analysis determines the amount of protec-
tion that is enforced by a piece of code. We formalize both analysis as type systems and
prove preservation and progress properties.

Rest of the paper. We begin with a discussion of the dynamic semantics of λ-RBAC
in section 2 and follow up in section 3 to clarify the expressiveness with examples.
Section 4 describes the static analysis. The following section 5 provides types for the
examples of section 3. We conclude with a summary of related work in section 6.

For completeness, some material is presented in the appendices that may be read at
the discretion of the reader.

2 Language and Operational Semantics

2.1 Roles
The language of roles is built up from role constructors. The choice of role constructors
is application dependent, but must include at least the five constructors listed below. We
assume that each role constructor κ has an associated arity, arity(κ).
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ROLES

κ ::= · · · Role Constructors
⊥ least role (arity 0)
> greatest role (arity 0)
t join (arity 2)
u meet (arity 2)
amplify amplification (arity 1)

P,Q,R,S,T ::= Roles
κ(R1, . . . ,Rn) constructor

The semantics of roles is defined by the relation “`R > S” which states that R dominates
S. We do not define this relation, but rather assume that it has a suitable, application-
specific definition; we impose only the following requirements. We require that all con-
structors are monotone with respect to >. Further we require that roles form a distrib-
utive lattice: we require that the set of constructors include the nullary constructors ⊥
and > and binary constructors t and u (which we write infix). ⊥ is the least element; >
is the greatest element; t and u are idempotent, commutative, associative, and mutually
distributive meet and join operations on the lattice of roles. Note that, for any R, S, we
have ` R > ⊥ and ` > > R and ` Rt S > R and ` R > Ru S. Finally, we require the
unary constructor amplify, discussed below: amplify(R) will stand for the right to store
R in a piece of code. Its use is demonstrated in section 2.3.

2.2 Terms

Our goal is to capture the essence of role-based systems, where roles are used to regulate
the interaction of components of the system. We have chosen to base our language on
the call-by-value lambda calculus3 because it is simple and well understood, yet rich
enough to capture the key concepts. (We expect that our ideas can be adapted to both
process and object calculi.) The “components” in a lambda term are abstractions and
their calling contexts. Thus it is function calls and returns that we seek to regulate, and,
therefore, the language has roles decorating abstractions and applications.

We first present the calculus of runtime terms, which include syntactic forms for
frames.

TERMS

x,y,z, f,g Value Variables
U,V ::= · · · Values

x value variable

3 We have chosen an explictly sequenced variant (with let). Implicit sequencing can be recovered
using the following syntax sugar: ↓R M N M= let x=M; let y=N; ↓R x y. When x does not appear
free in N, we abbreviate let x=M; N as M; N . To focus the presentation, we elide base types,
indicating them in the syntax using ellipses. In examples, we use base types with the usual
operators and semantics, including Int (with values 0, 1, etc), Bool (with values true, false)
and Unit (with value ()). We write M[U/x] for the capture-avoiding substitution of U for x in
M.
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{Q}λx.M value abstraction, requiring Q (x bound with scope M)

M,N,L ::= · · · Terms
U value
let x=M; N let (x bound with scope N)
↓P U V value application, restricting to P
↓P[M] frame, restricting to P
↑P[M] frame, providing P

Evaluation is defined in terms of a role context. Formally, we define a judgment R `
M → N, which indicates R is authorized to compute a single step of the initial program
M, resulting in the new program N.

EVALUATION (R ` M → N)

(EVAL-APP)

` R > Q
R ` ↓P ({Q}λx.M) U →↓P[M[U/x]]

(EVAL-LET1)

R ` M → M′

R ` let x=M; N → let x=M′; N

(EVAL-RESTRICT1)

RuP ` M → M′

R ` ↓P[M]→↓P[M′]

(EVAL-PROVIDE1)

RtP ` M → M′

R ` ↑P[M]→↑P[M′]

(EVAL-LET2)

R ` let x=U; N → N[U/x]
(EVAL-RESTRICT2)

R ` ↓P[U]→U
(EVAL-PROVIDE2)

R ` ↑P[U]→U

Most of the rules are straightforward: let-bindings provide sequencing, and frames
affect the role context. We distinguish two types of frames: restricting frames reduce
the role context, and providing frames enhance it.

The rule EVAL-APP for application is slightly more complex. Application involves
two participants: the caller (or calling context) and the callee (or abstraction). Each
participant may wish to protect itself from the other. When the caller ↓P V U transfers
control to V , it may protect itself by restricting the role context to P while executing
V . Symmetrically, the callee ({Q}λx.M) may protect itself by demanding that the role
context before the call dominates Q. Significantly, the restricting frame created by the
caller does not take effect until after the guard is satisfied. In brief, the protocol is “call-
test-restrict,” with the callee controlling the middle step. This alternation explains why
restriction is syntactically fused into application.

A role is trivial if it has no effect on evaluation. Thus> is trivial in restricting frames
and applications, whereas ⊥ is trivial in providing frames and abstractions. We often
elide trivial roles and trivial frames; thus, λx.M is read as {⊥}λx.M (the check always
succeeds), and U V is read as ↓>U V (the role context is unaffected by the resulting
frame). In our semantics, these terms evaluate like ordinary lambda terms.

By stringing together a series of small steps, the final value for the program can
be determined. Successful termination is written R ` M ⇓ U which indicates that R
is authorized to run the program M to completion, with result U . Evaluation can fail
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because the term diverges or because an inadequate role is provided at some point in
the computation; we write the latter as R ` M ⇓ fail4.

LEMMA 2. If S ` M → M′ and ` R > S then R ` M → M′. �

2.3 The Trusted Computing Base and User Code

The ability to amplify rights must be carefully controlled to achieve security goals. Ac-
cess checks have no value if code can arbitrarily raise its role, but the opposite extreme
of disallowing all occurrences of ↑R[ ·] is overly restrictive. In this subsection we moti-
vate, and describe a mechanism to achieve, systematic control over rights amplification.

Consider the following program where M contains no direct rights amplification
(subterms of the form ↑R[ ·]) but U has no such restriction:

let g=U; ↓T[M]

We sometimes refer to g or U as part of the Trusted Computing Base (TCB) or as priv-
ileged functions, and to M as user code. When the entire program is run in the top role,
the user code will initially run in role T but may invoke g, possibly leading to rights
amplification. However, as the size of the TCB grows, it becomes too difficult to under-
stand the security guarantees offered by a system allowing arbitrary rights amplification
in all TCB code.

Access control in the presence of the amplify( · ) constructor provides a flexible dy-
namic way to control rights amplification. The following coding uses the derived form
M[[N]], which means roughly “run N in the context provided by M.” The definition en-
sures that (λf.λx.f x)[[N]] evaluates to N. (It is straightforward to define polymorphic
variants using the extensions discussed in Appendix B.)

DERIVED FORMS

M,N,L ::= · · · | M[[N]] | {|P|} | ⇑P | ⇓P

M[[N]] M= let x=M; x (λ_.N) () ⇓P M= λf.λx.↓P f x

{|P|} M= λf.{P}λx.f x ⇑P M= {|amplify(P)|}[[λf.λx.↑P[f x]]]

One can easily verify that these derived forms behave as expected:

– R ` {|P|}[[N]]→∗ N if ` R > P, otherwise it fails.
– R ` {|P|} λx.M →∗ {P}λy.λx.M y

β,α
={P}λx.M (using β- and α-equivalence).

– R ` ⇑P[[N]]→∗ ↑P[N] if ` R > amplify(P), otherwise it fails.
– R ` ⇓P[[N]]→∗ ↓P[N].
– R ` ⇓P U V →∗ ↓P U V .

We are now in a position to define user code.

4 Write “R`M0 →∗ Mn” if there exist terms Mi such that R`Mi →Mi+1, for all i (0≤ i≤ n−1).
Write “R ` M ⇓ U” if R ` M →∗ U . Write “R ` M ⇓” if R ` M →∗ U for some U . Write
“R ` M ⇓ fail” if R ` M →∗ M′ where R ` M′ X→ and M′ is not a value.
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DEFINITION 3. A term is user code if occurrences of ↑R[ ·] only appear in subterms
of the form ⇑R. �

Note that user code is not preserved by evaluation. Also note that any runtime term can
be translated into a user code term by replacing ↑ with ⇑, ↓ with ⇓, { } with {||}, and
[] with [[]]. This translation is also not preserved by evaluation.

3 Examples

EXAMPLE 4 (ACCESS CONTROL LISTS). Consider a web server that provides remote
access to files protected by Access Control Lists (ACLs) at the filesystem layer. A read-
only filesystem can be modelled as:

filesystem def=
λname.

if name = "file1" then {|ADMIN|}[["content1"]]
else if name = "file2" then {|ALICEuBOB|}[["content2"]]
else "error: file not found"

Assuming incomparable roles ALICE, BOB, and CHARLIE each strictly dominated by
ADMIN, code running in the ADMIN role can access both files:

ADMIN ` filesystem "file1" →∗ {|ADMIN|}[["content1"]] →∗ "content1"
ADMIN ` filesystem "file2" →∗ {|ALICEuBOB|}[["content2"]] →∗ "content2"

Code running as ALICE or BOB cannot access the first file but can access the second:

ALICE ` filesystem "file1" →∗ {|ADMIN|}[["content1"]] ⇓ fail
BOB ` filesystem "file2" →∗ {|ALICEuBOB|}[["content2"]] →∗ "content2"

Finally, assuming that CHARLIE 6≥ ALICEuBOB, code running as CHARLIE cannot
access either file:

CHARLIE ` filesystem "file1" →∗ {|ADMIN|}[["content1"]] ⇓ fail
CHARLIE ` filesystem "file2" →∗ {|ALICEuBOB|}[["content2"]] ⇓ fail

Now the web server can use the role assigned to a caller to access the filesystem (unless
the web server’s caller withholds their role). To prevent an attacker determining the
non-existence of files via the web server, the web server fails when an attempt is made
to access an unknown file unless the DEBUG role is activated.

webserver def=
λname.

if name = "file1" then filesystem name
else if name = "file2" then filesystem name
else {|DEBUG|}[["error: file not found"]]

For example, code running as Alice can access "file2" via the web server:

ALICE ` webserver "file2"
→∗ filesystem "file2"
→∗ {|ALICEuBOB|}[["content2"]]
→∗ "content2"
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�

Sollins [34] describes an access control mechanism for distributed systems that “co-
operate in the absence of complete trust of each other”. Example 5 explains how the
same concerns are addressed in λ-RBAC.

EXAMPLE 5 (TRAVEL AGENT - SIMPLIFIED FROM [34]). Suppose that company em-
ployees must purchase airline tickets from a travel agent. The travel agent must contact
the accounting department at the same company to verify and receive payment. The
accounts payable department at the company must check that the payment request re-
ceived from the travel agent is a request from an employee of their own company.

This scenario can be modelled by requiring an employee, or programs running on
their behalf, to delegate their role to the travel agent. The travel agent adds their own role
before calling the accounts payable department, and the accounts payable department
verifies both roles using the join, not the meet, of the EMPL and AGENT roles (we
assume functions to calculate the cost of a ticket, issue a ticket, and authorize payment):

let accountsPayable=⇓⊥[[{|EMPLtAGENT|} λx.authorizePayment (snd x)]];
let agent=⇓amplify(AGENT)[[

let t =⇑AGENT;
λdestination.

let cost=calculateCost destination;
let payment= t[[accountsPayable (destination,cost)]];
issueTicket destination

]];
⇓EMPL[[agent "New York"]]

Here amplify( · ) controls rights amplification. When the entire program is executed in
the top role, ⇑AGENT runs with role context amplify(AGENT) during the definition of
the travel agent. The result of running ⇑AGENT is used to amplify the role when the
employee, running with role context EMPL, subsequently calls the travel agent. �

Subsequent examples are written directly in the runtime language for the sake of econ-
omy of mechanism.

EXAMPLE 6 (MULTIPLE OWNERS). The Decentralized Label Model (DLM) [20] is
an information-flow model that allows multiple principals to impose, and update, a
policy on a piece of data. It is straightforward to program a comparable form of access
control in λ-RBAC, where resources are protected by multiple access control lists, and
the owner of an ACL may update their own ACL.

The ACLs are encoded as a single policy function of type Unit→Unit that is stored
with each value, and the pair of the policy and value are protected by an additional
access check to ensure exclusive access by privileged code, thus a protected value has
type Prot(σ) def= Unit→ ((Unit→ Unit)×σ), where σ is the type of the data to be pro-
tected. A typical protected value has the form {System}λ().(g,U) where the guard g
performs access checks against zero or more ACLs, each coded as a role as in exam-
ple 4. Following the DLM each ACL is expected to have an owner, drawn from a family
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of roles Owner1, . . . ,Ownern. Ownership is indicated by including the owner role in the
ACL itself. For example, to check two ACLs R1 ≤ Owner1 and R2 ≤ Owner2 we use
the guard:

λ().{|R1|}[[{|R2|}[[()]]]]

Protected values are accessed via a privileged function access : Prot(σ) → σ that re-
trieves and checks the policy—representing the multiple ACLs—stored with the data:

access def= λ f : Prot(σ).
let x : (Unit→ Unit)×σ=↑System[↓⊥ f ()];
(fst x) ();
snd x

Note that that value for f need not be trustworthy from access’s point of view, and,
consequently, the role System is not delegated to f . However, access’s caller must
delegate its role to access, because the latter in turn must delegate the same role to
the policy function. This is illustrated in the following trace where S ≥ R1 tR2 and
V = λ().{|R1|}[[{|R2|}[[()]]]]:

S ` access ({System}λ().(V,U))
→ let x=↑System[↓⊥ ({System}λ().(V,U)) ()]; (fst x) (); snd x
→ let x=↑System[↓⊥[(V,U)]]; (fst x) (); snd x
→ let x=↑System[(V,U)]; (fst x) (); snd x
→ let x=(V,U); (fst x) (); snd x
→ (fst (V,U)) (); snd (V,U)
→ (λ().{|R1|}[[{|R2|}[[()]]]]) (); snd (V,U)
→ ({|R1|}[[{|R2|}[[()]]]]); snd (V,U)
→∗ ({|R2|}[[()]]); snd (V,U)
→∗ (); snd (V,U)
→∗ U

Clearly, this system does not control information flow because a protected value
can be accessed according to the policy and then left unprotected. Moreover, it is not
possible for an owner to modify their own ACL without extracting the protected value
and creating a new protected resource—that will not possess the ACLs of other owners.
As an alternative, the privileged declassifyi : Prot(σ) → Prot(σ) functions allow an
owner to remove their own ACL without disturbing other ACLs on the protected value:

declassifyi
def= {Owneri}λ f : Prot(σ).

let x : (Unit→ Unit)×σ=↑System[↓⊥ f ()];
let g : Unit→ Unit= λ().↑Owneri[(fst x) ()];
{System}λ().(g,snd x)

The function declassifyi replaces the existing policy function, adding Owneri before the
policy is checked which overrides ACLs owned by Owneri. �

Example 7 illustrates how the Domain-Type Enforcement (DTE) security mech-
anism [5,35], as found in the NSA’s Security-Enhanced Linux (SELinux) [17], can be
implemented in λ-RBAC. Further discussion of the relationship between RBAC and DTE
can be found in [12,16].
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EXAMPLE 7 (DOMAIN-TYPE ENFORCEMENT / SELINUX). DTE grants or denies ac-
cess requests according to the domain of the requesting process and the type assigned to
the object, e.g., a file or port. The domain of a process may only change when another
image is executed. DTE facilitates use of least privilege by limiting domain transitions
based upon the source domain, target domain, and type assigned to the invoked exe-
cutable file. The DTE domain transition from role R to role S (each acting as domains)
can be modelled by the function R E−→ S that allows code running at role R to apply a
function at role S:

R E−→ S def= {R}λ( f ,x).↓⊥ f ({E}λg.↑S[g x])

However, the domain transition is only performed when the function is associated with
role E, modelling assignment of DTE type E to an executable file. Association of a
function g with role E is achieved by accepting a continuation that is called back at
role E with the function g. The function assignTypeE allows code running at ADMIN
to assign DTE types to other code:

assignTypeE
def= {ADMIN}λg.λh.↑E[↓⊥ h g]

For example, for a function value U :

ADMIN ` ↓⊥ assignTypeE U →∗
λh.↑E[↓⊥ h U]

Then given a value V such that S `U V →∗ W we have:

R ` ↓⊥ (R E−→ S) (λh.↑E[↓⊥ h U],V )→∗ W

With the R E−→ S and assignTypeE functions we can adapt the login example from [35]
to λ-RBAC. In this example, the DTE mechanism is used to force every invocation of
administrative code (running at ADMIN) from daemon code (running at DAEMON)
to occur via trusted login code (running at LOGIN). This is achieved by providing
domain transitions from DAEMON to LOGIN, and LOGIN to ADMIN, but no others.
Moreover, code permitted to run at LOGIN must be assigned DTE type LOGINEXE,
and similarly for ADMIN and ADMINEXE. Thus a full program running daemon code
M has the following form, where neither M nor the code assigned to g variables contain
rights amplification:

let daemonToLogin=DAEMON LOGINEXE−−−−−−−→ LOGIN;

let loginToAdmin=LOGIN ADMINEXE−−−−−−−→ ADMIN;
let shell= let g= . . .; ↓⊥ assignTypeADMINEXE (g);
let login= let g= λ(password,cmd).

if password = "secret" then
↓⊥ loginToAdmin (shell,cmd)

else
. . .;

↓⊥ assignTypeLOGINEXE (g);
↓DAEMON[M]
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In the above program, the daemon code M must provide the correct password in order
to execute the shell at ADMIN because the login provides the sole gateway to ADMIN.
In addition, removal of the domain transition daemonToLogin makes it impossible for
the daemon code to execute any code at ADMIN. �

4 Statics

We consider two kinds of static analysis: (i) a type system to enable removal of unnec-
essary role-checks in a piece of code for a caller at a sufficiently high role, and (ii) a
type system to determine the amount of protection that is enforced by the callee.

To make the issues as clear as possible, we treat a simply-typed calculus with
subtyping in the main text; we discuss bounded role polymorphism in Appendix B.
Throughout the rest of this section, we assume that all roles (and therefore all types) are
well-formed, in the sense that role constructors have the correct number of arguments
(for a more explicit treatment, see the appendix).

In this section, we only consider toy examples. In section 5 we revisit types, in both
type systems, for the examples from section 3.

4.1 A type system to calculate caller roles

Values require no computation to evaluate, thus the value judgment Γ `U : τ includes
only the type τ. The judgment for terms Γ ` M : {R} τ does include an effect R, indi-
cating that R is sufficient to evaluate M without role errors, i.e., EVAL-APP will always
succeed.

The type language includes base types (which we elide in the formal presentation)
and function types. The function type σ →{Q.R} τ is decorated with two latent ef-
fects; roughly, these indicate that the role context must dominate Q in order to pass the
function’s guard, and that the caller must provide a role context of at least R for execu-
tion of the function body to succeed. The least role ⊥ is trivial in function types; thus
σ → τ abbreviates σ →{⊥.⊥} τ. We also write σ →{R} τ for σ →{⊥.R} τ. If all
roles occurring in a term are trivial, our typing rules degenerate to those of the standard
simply-typed lambda calculus.

TYPES

σ,τ ::= · · · Types
σ →{Q.R} τ value abstraction

Γ,∆ ::= x1:σ1, . . . ,xn:σn Environments

VALUE AND TERM TYPING (Γ `U : τ) (Γ ` M : {R} τ)

(VAL-VAR)

Γ(x) = τ

Γ ` x : τ

(VAL-ABS)

Γ,x:σ ` M : {R} τ

Γ ` {Q}λx.M : σ →{Q.R} τ

(TERM-VAL)

Γ `U : τ

Γ `U : {⊥} τ

(TERM-LET)

Γ ` M : {R} σ

Γ,x:σ ` N : {S} τ

Γ ` let x=M; N : {RtS} τ
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(TERM-APP)

Γ `U : σ →{Q.RuP} τ

Γ `V : σ

Γ ` ↓P U V : {QtR} τ

(TERM-RESTRICT)

Γ ` M : {RuP} τ

Γ ` ↓P[M] : {R} τ

(TERM-PROVIDE)

Γ ` M : {RtP} τ

Γ ` ↑P[M] : {R} τ

(TERM-SUBEFFECT)

Γ ` M : {S} τ

` R > S
Γ ` M : {R} τ

VAL-ABS simply records the effects that the abstraction will incur when run. By TERM-
VAL, a value can be treated as a term that evaluates without error in every role context.
TERM-LET indicates that two expressions must succeed sequentially if the current role
guarantees success of each individually. TERM-RESTRICT (resp. TERM-PROVIDE) cap-
tures the associated rights weakening (resp. amplification). TERM-APP incorporates the
role required to evaluate the function to an abstraction and the role required to evaluate
the body of the function (while allowing for rights weakening).

Subtyping. A natural notion of subtyping is induced from the role ordering. Formally,
subtyping is the least precongruence on types induced by SUBTYPING-BASE. There are
subsumption rules for values and terms.

SUBTYPING (` σ <: σ′)

(SUBTYPING-BASE)

` σ′ <: σ ` Q′ > Q ` S′ > S ` τ <: τ′

` (σ →{Q.S} τ) <: (σ′ →{Q′ .S′} τ′)

(VAL-SUBTYPE)

Γ `U : σ ` σ <: σ′

Γ `U : σ′

(TERM-SUBTYPE)

Γ ` M : {R} τ ` τ <: τ′

Γ ` M : {R} τ′

The following example of Church booleans, illustrates the typing system. The Church
booleans, λt.λf.t and λt.λf.f can be given type (σ →{R} τ) → (σ →{S} τ) → (σ
→{RtS} τ). The type system satisfies standard preservation and progress properties.

THEOREM 8. If Γ ` M : {R} τ and S ` M → M′, then Γ ` M′ : {R} τ.
If Γ ` M : {R} τ then either M is a value, or R ` M → M′, for some M′.

Algorithmic version. In order to facilitate bottom-up deduction and lead into the next
type system, we now describe an alternate algorithmic presentation of the type system.
Here we insist that the role lattice is Boolean, i.e., a distributive lattice with a comple-
ment R? for every role R, where R and S are complements if RuS =⊥ and RtS =>.

ALGORITHMIC VERSION (VAL-VAR, VAL-ABS, TERM-VAL, TERM-LET AS BEFORE)

Γ `A U : σ →{Q.R} τ

Γ `A V : σ′ ` σ′ <: σ

` P > R
Γ `A ↓P U V : {QtR} τ

Γ `A M : {R} τ

` P > R
Γ `A ↓P[M] : {R} τ

Γ `A M : {R} τ

Γ `A ↑P[M] : {RuP?} τ

PROPOSITION 9. If Γ `A M : {R} τ then Γ ` M : {R} τ.
If Γ `M : {R} τ then Γ `A M : {R′} τ′ for some R′ and τ′ such that ` R > R′ and ` τ′ <: τ.



12 Jagadeesan, et al

4.2 A type system to determine callee protection

Our second type system has aims “dual” to the previous type system. Rather than at-
tempting to calculate a caller role that guarantees that all execution paths are success-
ful, we now calculate the minimum protection demanded by the callee on all execution
paths.

Formally, we present the type system by building on the algorithmic presenta-
tion. We use the algorithmic system, with the following changes: we use altered ver-
sions of TERM-APP, TERM-RESTRICT and inverted versions of TERM-SUBEFFECT and
SUBTYPING-BASE, with the resulting system denoted using “”.

TYPING FOR CALLEE PROTECTION. OTHER RULES FROM ALGORITHMIC VERSION

Γ  M : {S} τ ` S > R
Γ  M : {R} τ

 σ′ <: σ ` Q > Q′ ` S > S′  τ <: τ′

 (σ →{Q.S} τ) <: (σ′ →{Q′ .S′} τ′)
(TERM-APP)

Γ  U : σ →{Q.R} τ

Γ  V : σ′ ` σ′ <: σ

Γ  ↓P U V : {QtR} τ

(TERM-RESTRICT)

Γ  M : {R} τ

Γ  ↓P[M] : {R} τ

In the new system, the Church booleans may be given type: (σ→{R} τ)→ (σ→{S} τ)
→ (σ →{RuS} τ). This type illustrates the “minimum over all paths” principle via
RuS (to be contrasted with RtS in the previous typing system.)

The following lemma captures the idea that values are already in normal form, so
do not enforce any protection.

LEMMA 10.  U : {S} τ implies S =⊥.

Unsurprisingly, considering the motivation behind this type system, the standard
form of the type preservation result does not hold for this system. For example 
({>}λ_.()) () : {>} Unit and > ` ({>}λ_.()) ()→ () but 6 () : {>} Unit. The
following theorem captures the invariants preserved by reduction.

THEOREM 11. If Γ  M : {S} τ and ` R 6> S and R ` M → M′, then Γ  M′ : {S} τ.

In combination with lemma 10, theorem 11 yields that if Γ  M : {S} τ, then it is not
possible for M to evaluate to a value without using a role above S. We see this as follows.
If we start execution in a role context (R in the theorem statement) that does not suffice
to pass the minimum protection guarantee (S in the theorem statement), then a single
step of reduction has only two possibilities: (i) a check, e.g., for S, that is not passed by
R occurs and the term gets stuck, or (ii) the check for S does not happen at this step but
the invariant that the minimum protection is S continues to get preserved.

5 Typing Examples

EXAMPLE 12. Recall the filesystem and web server from example 4. The filesystem
code can be assigned the following type, meaning that a caller must possess a role from
each of the ACLs in order to guarantee that access checks will not fail:

` filesystem : String →{⊥.ADMINt (ALICEuBOB)t⊥} String
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In the above type, the final role ⊥ arises from the “unknown file” branch that does not
require an access check. The lack of an access check explains the weaker type in the
dual system:

 filesystem : String →{⊥.ADMINu (ALICEuBOB)u⊥} String

This type indicates that filesystem has the potential to expose some information to un-
privileged callers with role ADMIN u (ALICEuBOB)u⊥ = ⊥, perhaps causing the
code to be flagged for security review.

The access check in the web server does prevent the “unknown file” error message
leaking unless the DEBUG role is active, but, unfortunately, it is not possible to assign
a role strictly greater than ⊥ to the web server using the second type system because
the filesystem type does not record the different roles that must be checked depending
upon the filename argument, and hence:

6 webserver : String →{⊥.ADMINu (ALICEuBOB)uDEBUG} String �

EXAMPLE 13. Unlike example 12, the DLM-inspired operations on values protected
by ACLs with different owners in example 6 can be assigned the same type in both type
systems. First, define the type of values protected by role R:

Prot(R,σ) def= Unit→{System.⊥} ((Unit→{R} Unit)×σ)

Now, for any role R, we have:

` access : Prot(R,σ)→{R} σ

 access : Prot(R,σ)→{R} σ

The first type assignment ensures that the protected value can be accessed at role R,
on the assumption that access to the pair is possible with role System and the guard
function with role R. In contrast, the second type assignment ensures that access to the
protected value is guaranteed to require R, on the assumption that the guard function is
guaranteed to require R.

The declassification operation that removes an owner’s ACL from the guard can be
assigned the following type:

` declassifyi : Prot(RtOwneri,σ)→{Owneri .⊥} Prot(R,σ)

Thus, partitioning the role required to pass a protected value’s guard as RtOwneri
ensures that the declassified protected value can be accessed with R. In particular, note
that an ACL owned by Owneri with the form S = S1 u S2 u . . .u Sn uOwneri satisfies
RtS ≤ RtOwneri and so ` Prot(RtS,σ) <: Prot(RtOwneri,σ).

The second type system can assign the same type to declassification if the role lattice
is Boolean and satisfies RuOwneri =⊥:

 declassifyi : Prot(RtOwneri,σ)→{Owneri .⊥} Prot(R,σ)

The condition RuOwneri =⊥ ensures that guaranteed checks against R are not negated
by the addition of Owneri to the role context at runtime. For example, the type assign-
ment would clearly be incorrect when R = Owneri.
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Subtyping in the second type system makes the above type for declassification less
useful. Fortunately, a much more useful type can be assigned for all roles R and S such
that RuOwneri =⊥:

 declassifyi : Prot(Rt (SuOwneri),σ)→{Owneri .⊥} Prot(R,σ)

Here the role S corresponds to other entries in the ACL owned by Owneri. �

EXAMPLE 14. Recall the encoding of the DTE/SELinux domain transition mechanism
from example 7. Define types for functions running at role S (acting as a domain) and
functions that can prove their assigned DTE type5 is E by calling back with that role:

Func(σ,τ,S) def= σ →{S} τ

FuncDTEType(σ,τ,S,E) def= (Func(σ,τ,S)→{E .⊥} τ)→{⊥} τ

A domain transition will certainly succeed if the caller possesses role R and the function
invoked after the domain transition requires at most role S:

` R E−→ S : FuncDTEType(σ,τ,S,E)×σ →{R.⊥} τ

In contrast, the following type guarantees that role R will be demanded from the caller:

 R E−→ S : FuncDTEType(σ,τ,S,E)×σ →{R.⊥} τ

Similarly, the function that assigns DTE types has the same λ-RBAC type in both sys-
tems.

` assignTypeE : Func(σ,τ,S)→{ADMIN .⊥} FuncDTEType(σ,τ,S,E)
 assignTypeE : Func(σ,τ,S)→{ADMIN .⊥} FuncDTEType(σ,τ,S,E) �

6 Related work

We have already referred to several related pieces of research in the earlier text and
examples.

Recently, there has been renewed interest in the subject of access control — both
formal, e.g., see [1] for a broad survey of literature in logical methods in access control;
and pragmatic, e.g., addressing the use of software components by requiring that access
control take into account the history of execution, either the entire execution history
(e.g., [2]) or under the discipline of stack inspection (e.g., [36,14]) where the history
is restricted to all unfinished method calls

Role-based access control introduces a level of indirection between subjects and
objects [29,13]. Usage control [30] provides a unified framework encompassing RBAC
and trust–management systems, in part by incorporating history-sensitive ideas into the
RBAC model.

5 Recall that DTE types are modelled as roles, and should not be confused with λ-RBAC types.
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The papers that are most directly relevant to to the current paper are [6,10]. Both
these papers start off with a mobile process-based computational model. Both calculi
have primitives to activate and deactivate roles: these roles are used to prevent undesired
mobility and/or communication, and are similar to the primitives for role restriction and
amplification in this paper. Static type systems are used to provide guarantees about the
minimal role required for execution to be successful — our first type system occupies
the same conceptual space as the static analysis in these papers.

In contrast to this paper, the underlying computation model is more expressive in
the above papers. However, our second type system that calculates minimum access
controls does not seem to have an analogue in these papers. More globally, our paper
has been influenced by the desire to serve loosely as a metalanguage for programming
RBAC mechanisms in examples such as the JAAS/.NET frameworks. Thus, our treat-
ment internalizes rights amplification by program combinators and the amplify role
constructor in role lattices. In contrast, the above papers use external — i.e. not part of
the process language — mechanisms (namely, user policies in [10], and RBAC-schemes
in [6]) to enforce control on rights activation.

In future work, we hope to integrate into λ-RBAC the powerful bisimulation princi-
ples that are explored in these papers.

Our paper deals with access control, so the work on information flow, e.g., see [26]
for a survey, is not directly relevant. However, we note that rights amplification plays
the same role in λ-RBAC that declassification and delimited release [9,27,21] plays in
the context of information flow; namely that of permitting access that would not have
been possible otherwise.
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A Examples from .NET

What expressiveness is required of a programming language framework that supports
RBAC? In a sequence of .NET examples6, closely based on [18], we give the reader a
flavor of the basic programming idioms.

EXAMPLE 15 ( [18]). In the .NET Framework CLR, every thread has a Principal ob-
ject that carries its role. In programming, it often needs to be determined whether a spe-
cific Principal object belongs to a familiar role. The code performs checks by making
a security call for a PrincipalPermission object. The PrincipalPermission class denotes
the role that a specific principal needs to match. At the time of a security check, the
CLR checks whether the role of the Principal object of the caller matches the role of
the PrincipalPermission object being requested. If the role values of the two objects do
not match, an exception is raised. The following code snippet illustrates the issues:

PrincipalPermission usrPerm =
new PrincipalPermission (null,"Manager");

usrPerm.Demand()

If the current thread is associated with a principal that has the the role of manager, the
PrincipalPermission objects are created and security access is given as required. If the
credentials are not valid, the PrincipalPermission objects are not created and a security
exception is raised. �

The next example illustrates that boolean combinations of roles are permitted in pro-
grams. In classical RBAC terms, this is abstracted by a lattice structure on roles.

EXAMPLE 16 ( [18]). The Union method of the PrincipalPermission class combines
multiple PrincipalPermission objects. The following code represents a security check
that succeeds only if the Principal object represents a user in the CourseAdmin or
BudgetManager roles:

PrincipalPermission Perm1 =
new PrincipalPermission (null,"CourseAdmin");

PrincipalPermission Perm2 =

6 In order to minimize the syntactic barrage on the unsuspecting reader, our examples to illus-
trate the features are drawn solely from the .NET programming domain. At the level of our
discussion, there are no real distinctions between JAAS and .NET security services.
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new PrincipalPermission(null,"BudgetManager’);

\\ Demand at least one of the roles using Union
perm1.Union (perm2).Demand ()

Similarly, there is an Intersect method to represent a “join” operation in the role lattice.
�

The key operation in such programming is rights modulation. Rights modulation of
course comes in two flavors: rights weakening is overall a safe operation, since the caller
choses to execute with fewer rights. On the other hand, rights amplification is clearly a
more dangerous operation. In the .NET framework, rights modulation is achieved via a
technique called impersonation.

EXAMPLE 17. From a programming viewpoint, it is convenient, indeed sometimes re-
quired, for an application to operate under the guise of different users at different times.
In the .NET framework, this is called impersonation. Programmatically, impersonation
of an account is achieved by retrieving and using the account’s token, as done by the
following code snippet:

WindowsIdentity stIdentity = new WindowsIdentity (StToken);
\\ StToken is the token associated with the Windows acct being impersonated

WindowsImpersonationContext stImp = stIdentity.Impersonate();
\\ now operating under the new identity

stImp.Undo(); \\ revert back
�

B Extensions of Typing

We can formalize the assumption that all roles are well-formed by incorporating this
requirement into the type system. To achieve this, we must provide definitions for good
roles, types and environments.

GOOD ENVIRONMENT (Γ ` �) (Γ ` R) (Γ ` σ)

(ENV-EMPTY)

/0 ` �

(ENV-VAR)

Γ ` � Γ ` σ

x 6∈ dom(Γ)
Γ,x:σ ` �

(ROLE-CONSTR)

arity(κ) = n
Γ ` Ri

(∀i∈{1,...,n})

Γ ` κ(R1, . . . ,Rn)

(TYPE-ABS)

Γ ` σ Γ ` Q
Γ ` τ Γ ` S
Γ ` σ →{Q.S} τ

(TYPE-BASE)

σ is a base type
Γ ` σ

We must then back-patch the well-formedness requirement into the typing system. We
require that each synactically mentioned role be well formed. We must also insist that
the environment be well formed; this is achieved by requiring that environments be
well-formed (written Γ ` �) for any base term. For example, the rules for variables, unit
values and abstractions become the following.

Γ ` � Γ(x) = τ

Γ ` x : τ

Γ ` �
Γ ` () : Unit

Γ ` Q Γ,x:σ ` M : {S} τ

Γ ` {Q}λx.M : σ →{Q.S} τ
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Role parametricity can be added as follows.

ROLE PARAMETRICITY — SYNTAX AND EVALUATION

p,q,r,s Role Variables

P,Q,R,S ::= · · · | Rolesr

σ,τ ::= · · · | Types∀p > P.τ

Γ,∆ ::= · · · | EnvironmentsΓ, p > P

U,V ::= · · · | ValuesΛr.U

M,N,L ::= · · · | TermsU 〈R〉
(EVAL-ROLE-APP)

R ` (Λs.M) 〈S〉 → M[S/s]

Typing requires that the role order be lifted to open roles (those with free occurences of
role variables). We require that the resulting relation, Γ ` S > R, satisfies the following
(where all roles, types and environments in the antecedents are assumed to be well
formed):

(WEAKENING) If Γ ` S > R then Γ, p > P ` S > R.
(BOUND WEAKENING) If Γ, p > P ` S > R and Γ ` Q > P then Γ, p > Q ` S > R.
(SUBSTITUTIVITY) If Γ, p > P ` S > R and Γ ` Q > P then Γ ` S[Q/p] > R[Q/p].

ROLE PARAMETRICITY — STATICS

(ROLE-VAR)

p ∈ dom(Γ)
Γ ` p

(TYPE-ROLE-ABS)

Γ, p > P ` τ

Γ ` ∀p > P.τ

(SUBTYPE-ROLE-ABS)

Γ ` P′ > P
Γ, p > P′ ` τ <: τ′

Γ ` (∀p > P .τ ) <: (∀p > P′.τ′)

(ENV-ROLE-VAR)

Γ ` � Γ ` P
p 6∈ dom(Γ)
Γ, p > P ` �

(VAL-ROLE-ABS)

Γ ` P
Γ, p > P `U : τ

Γ ` Λp.U : ∀p > P.τ

(TERM-ROLE-APP)

Γ `U : ∀p > P.τ

Γ ` Q Γ ` Q > P
Γ `U 〈Q〉 : {⊥} σ

Following [7,4], we can also add equirecursive types.

C Multics

EXAMPLE 18 (MULTICS). The Multics system [22,15,32] uses protection rings, or
rings for short, to protect interacting but mutually suspicious subsystems. Each data
segment is protected with an access bracket (a,b), where a ≤ b are ring numbers that
control access to the data segment, and ring 0 is the most privileged ring. A process
running in ring i can write to the data segment if 0 ≤ i ≤ a, and can read from the
data segment if a ≤ i ≤ b. Each procedure segment is protected with an access and call
bracket (a,b,c). Suppose a process running in ring i attempts to invoke such a proce-
dure:
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Outward Call If 0 ≤ i < a then a ring-crossing fault is generated. The procedure will
execute in ring a, reducing privileges.

Regular Call If a ≤ i ≤ b then the procedure will execute. The procedure will execute
in ring i.

Inward Call If b < i ≤ c and the procedure segment is marked as a gate (a designated
entrypoint for less privileged callers) then the procedure will execute. The proce-
dure will execute in ring b, increasing privileges.

Failed Call If b < i ≤ c and the procedure segment is not a gate, or if c < i, then the
invocation fails.

To implement rings in λ-RBAC, take the role lattice to be the free Boolean lattice over a
set that includes ring numbers {0, . . . ,MAX}. Although lower-numbered rings are con-
sidered more privileged than higher-numbered rings, this is not reflected in the role
order because of the need to differentiate outward calls—that cause ring-crossing faults
in Multics—from regular calls, and hence roles representing different ring numbers are
incomparable. Programs use trusted code to invoke other procedures (functions repre-
senting procedure segments). The trusted invocation code modifies the ring if necessary,
and maintains the invariant that code runs with no more than one ring. For example, an
inward call from code running in ring i will cause the trusted invocation code to switch
from ring i to ring b using (↓¬i[↑b[ . . .]]). In order to perform the correct test, and
ring change if necessary, the trusted invocation code must know the caller’s ring. In this
implementation, the current ring number is passed as an integer between function calls.
The trusted invocation code can both branch upon the current ring number and check
that a claimed current ring number matches with the ring number determined by the
role.

As an example, consider a function proc acting as a gate of type Int×σ→ τ, where
the integer component of the argument is expected to be the ring number in which the
function is running. To assign proc the access and call bracket (a,b,c), add trusted
invocation code to form a new function PROC:

PROC def=
λr : Int.

if r = 0 then AUX0
else if r = 1 then AUX1
. . .
else if r = c then AUXc
else . . .error . . .

AUXi
def=


{i}λx.↓¬i[↑a[proc (x,a)]] 0 ≤ i < a
{i}λx.proc (x, i) a ≤ i ≤ b
{i}λx.↓¬i[↑b[proc (x,b)]] b < i ≤ c

Code can invoke proc directly, but no ring change will take place. By invoking PROC,
code can run proc with an appropriate ring. Such an invocation has the form let x=↓⊥ PROC r;
x V , where the current ring is bound to variable r as an integer, and the argument to the
function is V . �


