SE547: Lecture 2

Overview

Foundational calculi

Lambda-calculus

Equivalence

Derived forms

Foundational calculi

What is a foundational calculus?

What are some examples of foundational calculi?

Why are they interesting?

Foundational calculi

Most foundational calculi come with:

- 1) Syntax of core language.
- 2) Dynamic semantics of core language.
- 3) Derived forms.
- What are these?

Foundational calculi

Many problems in computing are *safety* properties.

What is a safety property?

What are example safety properties?

What are example properties which are not safety properties?

How can we give a formal definition of a safety properties?

Lambda-calculus

What are the goals of the lambda-calculus?

History: Schönfinkel (1920's), Church (1930's), McCarthy (1950's), Landin (1960's), Scheme / Standard ML / Haskell / CAML / ... (1970's-now).

Lambda-calculus

Assume a collection of variables *x*, *y*, *z*... Core syntax:

L, M, N ::= xM N $\lambda x.M$

What are these?

Note: no booleans, integers, while loops, etc. Is this worrying?

Also note: no threads, concurrency controls, etc. Is this worrying?

Lambda-calculus

Examples:

1. $\lambda x \cdot x$ 2. λ*y* . *y* 3. λ*y* . *x* 4. $\lambda x \cdot \lambda y \cdot x$ 5. $\lambda x \cdot \lambda y \cdot y$ 6. $\lambda y \cdot \lambda x \cdot y$ 7. $(\lambda x . x)(\lambda y . y)$ 8. $(\lambda x \cdot x (\lambda y \cdot y))$ 9. $(\lambda x \cdot x (\lambda y \cdot y)) (\lambda z \cdot z)$ 10. $(\lambda x \cdot x x) (\lambda x \cdot x x)$

Which of these 'are the same program'? What does that mean?

Two notions of 'are the same program':

1. alpha-equivalence: 'allowed to rename bound variables'.

2. beta-equivalence: alpha + 'allowed to apply functions'.

Which of the examples are alpha-equivalent? Which are beta-equivalent?

Formalize alpha-equivalence...

Define [M/x]N as 'replace *M* for *x* in *N*'. Examples:

[λy . y / x](x)
 [λz . z / x] (x (λy . y))
 [λx . x x / x] (x x)

Alpha-equivalence is generated by:

 $(\lambda x \cdot M) = (\lambda y \cdot [y/x]M)$ when *y* is fresh

Which of these are alpha-equivalent?

λx . λy . x
 λx . λy . y
 λy . λx . y

Formalize function application (jargon: beta-reduction) generated by:

(λx . M) N \rightarrow ([N/x]M)

Examples:

1.
$$(\lambda x . x)(\lambda y . y)$$

2. $(\lambda x . x (\lambda y . y))$
3. $(\lambda x . x (\lambda y . y))(\lambda z . z)$
4. $(\lambda x . x x)(\lambda x . x x)$

Beta-equivalence:

 $M =_{\beta} N$ whenever $\exists L . M \rightarrow^{*} L$ and $N \rightarrow^{*} L$ Sanity checks: $M =_{\beta} M$? If $M =_{\beta} N$ then $N =_{\beta} M$? If $L =_{\beta} M$ and $M =_{\beta} N$ then $L =_{\beta} N$?

Derived forms

Booleans:

True =
$$(\lambda x . \lambda y . x)$$

False = $(\lambda x . \lambda y . y)$
if $L \{M\}$ else $\{N\} = (LMN)$

Verify:

if True { *M* } else { *N* } $=_{\beta} M$ if False { *M* } else { *N* } $=_{\beta} N$

Derived forms

Pairs:

 $(M, N) = (\lambda x \cdot x M N)$ Fst = $\lambda z \cdot z (\lambda x \cdot \lambda y \cdot x)$ Snd = $\lambda z \cdot z (\lambda x \cdot \lambda y \cdot y)$

Verify:

Fst (M, N) =_{β} MSnd (M, N) =_{β} N

Similar codings for integers, lists, etc.

Derived forms

Recursion:

fix $M = (\lambda x \cdot M(xx))(\lambda x \cdot M(xx))$

Verify:

fix $M =_{\beta} M$ (fix M)

Example:

factorial = fix fact fact = ($\lambda f \cdot \lambda x$ if (x < 2) { 1 } else { x * f (x - 1) })

Verify:

factorial $3 =_{\beta} 6$

Next week

Homework sheet 2.

Calculi for protocols: pi- and spi-calculus.