
SE547: Lecture 2

Overview

Foundational calculi

Lambda-calculus

Equivalence

Derived forms

Foundational calculi

What is a foundational calculus?

What are some examples of foundational calculi?

Why are they interesting?

Foundational calculi

Most foundational calculi come with:

1) Syntax of core language.

2) Dynamic semantics of core language.

3) Derived forms.

What are these?

Foundational calculi

Many problems in computing are safety properties.

What is a safety property?

What are example safety properties?

What are example properties which are not safety properties?

How can we give a formal definition of a safety properties?

Lambda-calculus

What are the goals of the lambda-calculus?

History: Schönfinkel (1920’s), Church (1930’s), McCarthy (1950’s),
Landin (1960’s), Scheme / Standard ML / Haskell /
CAML / ... (1970’s-now).

Lambda-calculus

Assume a collection of variables x, y, z... Core syntax:

L, M, N ::=
x
M N
λx.M

What are these?

Note: no booleans, integers, while loops, etc. Is this worrying?

Also note: no threads, concurrency controls, etc. Is this worrying?

Lambda-calculus

Examples:

1. λx . x

2. λy . y

3. λy . x

4. λx . λy . x

5. λx . λy . y

6. λy . λx . y

7. (λx . x)(λy . y)

8. (λx . x (λy . y))

9. (λx . x (λy . y)) (λz . z)

10. (λx . x x) (λx . x x)

Which of these ‘are the same program’? What does that mean?

Equivalence

Two notions of ‘are the same program’:

1. alpha-equivalence: ‘allowed to rename bound variables’.

2. beta-equivalence: alpha + ‘allowed to apply functions’.

Which of the examples are alpha-equivalent? Which are
beta-equivalent?

Equivalence

Formalize alpha-equivalence...

Define [M/x]N as ‘replace M for x in N’. Examples:

1. [λy . y / x](x)

2. [λz . z / x] (x (λy . y))

3. [λx . x x / x] (x x)

Alpha-equivalence is generated by:

(λx . M) = (λy . [y/x]M) when y is fresh

Which of these are alpha-equivalent?

1. λx . λy . x

2. λx . λy . y

3. λy . λx . y

Equivalence

Formalize function application (jargon: beta-reduction) generated by:

(λx . M) N → ([N/x]M)

Examples:

1. (λx . x)(λy . y)

2. (λx . x (λy . y))

3. (λx . x (λy . y)) (λz . z)

4. (λx . x x) (λx . x x)

Equivalence

Beta-equivalence:

M =β N whenever ∃ L . M →∗ L and N →∗ L

Sanity checks:

M =β M?

If M =β N then N =β M?

If L =β M and M =β N then L =β N?

Derived forms

Booleans:

True = (λx . λy . x)
False = (λx . λy . y)
if L { M } else { N } = (L M N)

Verify:

if True { M } else { N } =β M
if False { M } else { N } =β N

Derived forms

Pairs:

(M, N) = (λx . x M N)
Fst = λz . z (λx . λy . x)
Snd = λz . z (λx . λy . y)

Verify:

Fst (M, N) =β M
Snd (M, N) =β N

Similar codings for integers, lists, etc.

Derived forms

Recursion:

fix M = (λx . M (x x)) (λx . M (x x))

Verify:

fix M =β M (fix M)

Example:

factorial = fix fact
fact = (λf . λx . if (x < 2) { 1 } else { x * f (x - 1) })

Verify:

factorial 3 =β 6

Next week

Homework sheet 2.

Calculi for protocols: pi- and spi-calculus.

