
SE547: Lecture 2

Overview

Foundational calculi

Lambda-calculus

Equivalence

Derived forms



Foundational calculi

What is a foundational calculus?

What are some examples of foundational calculi?

Why are they interesting?



Foundational calculi

Most foundational calculi come with:

1) Syntax of core language.

2) Dynamic semantics of core language.

3) Derived forms.

What are these?



Foundational calculi

Many problems in computing are safety properties.

What is a safety property?

What are example safety properties?

What are example properties which are not safety properties?

How can we give a formal definition of a safety properties?



Lambda-calculus

What are the goals of the lambda-calculus?

History: Schönfinkel (1920’s), Church (1930’s), McCarthy (1950’s),
Landin (1960’s), Scheme / Standard ML / Haskell /
CAML / ... (1970’s-now).



Lambda-calculus

Assume a collection of variables x, y, z... Core syntax:

L, M, N ::=
x
M N
λx.M

What are these?

Note: no booleans, integers, while loops, etc. Is this worrying?

Also note: no threads, concurrency controls, etc. Is this worrying?



Lambda-calculus

Examples:

1. λx . x

2. λy . y

3. λy . x

4. λx . λy . x

5. λx . λy . y

6. λy . λx . y

7. ( λx . x )( λy . y )

8. ( λx . x ( λy . y ) )

9. ( λx . x ( λy . y ) ) ( λz . z )

10. ( λx . x x ) ( λx . x x )

Which of these ‘are the same program’? What does that mean?



Equivalence

Two notions of ‘are the same program’:

1. alpha-equivalence: ‘allowed to rename bound variables’.

2. beta-equivalence: alpha + ‘allowed to apply functions’.

Which of the examples are alpha-equivalent? Which are
beta-equivalent?



Equivalence

Formalize alpha-equivalence...

Define [M/x]N as ‘replace M for x in N’. Examples:

1. [ λy . y / x ]( x )

2. [ λz . z / x ] ( x ( λy . y ) )

3. [ λx . x x / x ] ( x x )

Alpha-equivalence is generated by:

( λx . M ) = ( λy . [y/x]M ) when y is fresh

Which of these are alpha-equivalent?

1. λx . λy . x

2. λx . λy . y

3. λy . λx . y



Equivalence

Formalize function application (jargon: beta-reduction) generated by:

( λx . M ) N → ( [N/x]M )

Examples:

1. ( λx . x )( λy . y )

2. ( λx . x ( λy . y ) )

3. ( λx . x ( λy . y ) ) ( λz . z )

4. ( λx . x x ) ( λx . x x )



Equivalence

Beta-equivalence:

M =β N whenever ∃ L . M →∗ L and N →∗ L

Sanity checks:

M =β M?

If M =β N then N =β M?

If L =β M and M =β N then L =β N?



Derived forms

Booleans:

True = ( λx . λy . x )
False = ( λx . λy . y )
if L { M } else { N } = ( L M N )

Verify:

if True { M } else { N } =β M
if False { M } else { N } =β N



Derived forms

Pairs:

( M, N ) = ( λx . x M N )
Fst = λz . z ( λx . λy . x )
Snd = λz . z ( λx . λy . y )

Verify:

Fst ( M, N ) =β M
Snd ( M, N ) =β N

Similar codings for integers, lists, etc.



Derived forms

Recursion:

fix M = ( λx . M ( x x ) ) ( λx . M ( x x ) )

Verify:

fix M =β M ( fix M )

Example:

factorial = fix fact
fact = ( λf . λx . if (x < 2) { 1 } else { x * f (x - 1) } )

Verify:

factorial 3 =β 6



Next week

Homework sheet 2.

Calculi for protocols: pi- and spi-calculus.


